Answer:

Explanation:
The capacitor of a parallel-plate capacitor is given by:

where
A is the area of each plate
d is the separation between the plates
is the vacuum permittivity
The energy stored in a capacitor instead is given by

where
Q is the charge stored in each plate
Substituting the expression we found for C inside the last formula,

And re-arranging it

Now if we substitute

We find the charge stored on the capacitor:

Answer:
A. 456 seconds
Explanation:
We are given that two students walk in the same direction along a straight path at a constant speed.
One student walks with a speed=0.90 m/s
second student walks with speed=1.9 m/s
Total distance covered by each students=780 meter
We have to find who is faster and how much time extra taken by slower student than the faster student.
Time taken by one student who travel with speed 0.90 m/s=
Time=
Time taken by one student who travel with speed 0.90 m/s
=
Time taken by one student who travel with speed 0.90 m/s
=866.6 seconds
Time taken by second student who travel with speed 1.9 m/s=
=410.5 seconds
The second student who travels with speed 1.9 m/s is faster than the student travels with speed 0.90 m/s .
Extra time taken by the student travels with speed 0.90 m/s=866.6-410.5=456.1 seconds
Extra time taken by the student travels with speed 0.90 m/s=456 seconds
Hence, option A is true.
Answer:
U2 = KAε0V2 / (2d)
Explanation:
The dielectric constant K just replaces the "3″ from Part B.
Answer:
Sound travels faster in liquids than in gases because molecules are packed more closely together. This means that when the water molecules begin to vibrate, they quickly begin to collide with each other forming a rapidly moving compression wave. Sound travels over four times faster than in air
Explanation:
<h2>Answer: Gravitational attraction
</h2>
Gravity force causes the clouds of dust and gas to form a protostar. As this <u>attraction force</u> is responsible for gathering and compressing the existing elements in the cloud of gas and dust, heating them during this process.
Then, when the amount of material accumulated by gravitational contraction is large enough, and the temperature and pressure reached high enough, the <u>nuclear fusion</u> process will begin.
To understand it better: The hydrogen nuclei will begin to fuse, generating helium nuclei in the process and releasing huge amounts of energy.
It should be noted that the protostars radiate half of the energy contributed by the gravitational collapse and the other half is invested in heating its core.