Answer:
Explanation:
F = ma. For us, this looks like
60 = 30a and
a = 2 m/s/s
If the force goes up to, say, 90, then
90 = 30a and
a = 3...if the force goes up, the acceleration also goes up.
If the mass goes up to say, 60, and the force stays the same, then
60 = 60a and
a = 1...if the mass goes up, the acceleration goes down.
False. They have same magnitude and opposite direction but they never cancel as each of them does the action on the other body, and for the forces to cancel out they need to act ob the same body.
Hope this helps!
Answer:
(a) 62.69 nJ/m^3
(b) 1015.22 μJ/m^3
Explanation:
Electric field, E = 119 V/m
Magnetic field, B = 5.050 x 10^-5 T
(a) Energy density of electric field = 
= 6.269 x 10^-8 J/m^3 = 62.69 nJ/m^3
(b) energy density of magnetic field = 

= 1.01522 x 10^-3 J/m^3 = 1015.22 μJ/m^3
To solve this problem we will apply the concepts related to the kinematic equations of linear motion. From there we will define the distance as the circumference of the earth (approximate as a sphere). With the speed given in the statement we will simply clear the equations below and find the time.



The circumference of the earth would be

Velocity is defined as,


Here
, then


Therefore will take 167463.97 s or 1 day 22 hours 31 minutes and 3.97seconds
Answer:
40
Explanation:
Mechanical advantage = effort arm / load arm
MA = 20 cm / 0.5 cm
MA = 40