After rolling off the edge of the cliff and falling ' M ' meters down,
the speed of the boulder is
Square root of ( 19.6 M ) .
If M=111 meters, then the speed is <em>46.64 meters per second</em>.
We have known for roughly 500 years that if there's no air resistance,
the mass of the falling object makes no difference, and all objects fall
with the same acceleration, speed, time to splat, etc.
Answer:
distance traveled is 15 mi
displacement is 5 mi
Explanation:
Distance takes time into account and adds up all the tiny displacements during the entire period of the trip.
Displacement ignores time and looks only at the change in position from the starting point to the ending point.
Closer to the sun . . . orbital speed is faster.
Farther from the sun . . . orbital speed is slower.
Flag answer: Answer 13 Answer 13
Answer:
a
b
Explanation:
From the question we are told that
The mass of the rock is
The length of the small object from the rock is
The length of the small object from the branch
An image representing this lever set-up is shown on the first uploaded image
Here the small object acts as a fulcrum
The force exerted by the weight of the rock is mathematically evaluated as
substituting values
So at equilibrium the sum of the moment about the fulcrum is mathematically represented as
Here is very small so
and
Hence
=>
substituting values
The mechanical advantage is mathematically evaluated as
substituting values
Answer:
The answer is below
Explanation:
a) The location ӯ of the center of mass G of the pendulum is given as:
b) the mass moment of inertia about z axis passing the rotation center O is:
c) The mass moment of inertia about z axis passing the rotation center O is: