According to <span>Gay-Lussac's Law the temperature and Pressure are directly proportional to each other if the amount and volume of given gas are kept constant.
Mathematically for initial and final states it is expressed as,
P</span>₁ / T₁ = P₂ / T₂ ----- (1)
Data Given;
P₁ = 1.5 atm
T₁ = 35 °C + 273 = 308 K
P₂ = ?
T₂ = 0 °C + 273 = 273 K
Solving Eq. 1 for P₂,
P₂ = P₁ T₂ / T₁
Putting values,
P₂ = (1.5 atm × 273 K) ÷ 308 K
P₂ = 1.32 atm
Result:
As the temperature is decreased so the pressure also decreases from 1.5 atm to 1.32 atm. Therefore the bag will contract.
Water Is A Liquid And Gravity Pulls Objects Up
<span>Which
of the following best describes the electron cloud model?
THE ELECTRON CLOUD MODEL WAS DEVELOPED BY SCHRODINGER. IT STATES THE THE ELECTRONS ARE NOT PARTICLES MOVING AROUND THE NUCLEUS IN FIXED ORBITY BUT THEIR LOCATIONS CAN ONLY BE STATED BY A PROBABILITY DENSITY IN FORM OF CLOUD AROUND THE NUCLEUS.
THEN THE MAIN POINT OF THE CLOUD MODEL IS THAT THE ELECTRONS ARE NOT IN FIXED ORBITS AROUND THE NUCLEUS BUT THEIR LOCATION IS STATED BY A PROBABILITY FUNCTION THAT IS LIKE A CLOUD REGION.
A. It shows
that electrons usually carry a negative charge.
FALSE: ELECTRONS ALWAYS CARRY NEGATIVE CHARGE
B. It shows that
electrons remain in high-energy subshells.
FALSE: ELECTRONS OCCUPY THE LOWEST-ENERGY SUBSHELLS AVAILABLE UNLESS THEY ARE EXCITED (ABSORB ENERGY)
C. It shows that electrons
move quickly in circular orbits.
FALSE: ELECTRONS DO NOT MOVE IN CIRCULAR ORBITS.
D. It shows that the electrons within
an atom do not have sharp boundaries.
TRUE. THE IDEA OF A CLOUD IS A DIFFUSSE REGION WHERE IS A 90% OF PROBABILITIES TO FIND THE ELECTRON, AND THEY DO NOT HAVE SHARP BOUNDARIES.
</span>
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ... When an equal number of atoms of an element is present on both sides of a chemical equation, the equation is balanced.
Answer:
Explanation:
H = 1
C = 12
O = 16
Acetylene, HC≡CH = 2+24 = 26
H2O = 2 + 16 = 18
In XS oxygen, one HC≡CH yields one H2O
26 g HC≡CH ==> 18 g H2O
2000 g HC≡CH ==> 2000*18/26 g H2O = 1384.6154 g H2O