All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons. As you move down the table, every row adds an orbital.
Answer:
X-Positions: Y-Positions
x(0) = 0 y(0) = 0
x(2) = 120 m y(2) = 19.6 m
x(4) = 240 m y(4) = 78.4 m
x(6) = 360 m y(6) = 176.4 m
x(8) = 480 m y(8) = 313 m
x(10) = 600m y (10) = 490 m
Explanation:
X-Positions
- First, we choose to take the horizontal direction as our x-axis, and the positive x-axis as positive.
- After being thrown, in the horizontal direction, no external influence acts on the stone, so it will continue in the same direction at the same initial speed of 60. 0 m/s
- So, in order to know the horizontal position at any time t, we can apply the definition of average velocity, rearranging terms, as follows:

- It can be seen that after 2 s, the displacement will be 120 m, and each 2 seconds, as the speed is constant, the displacement will increase in the same 120 m each time.
Y-Positions
- We choose to take the vertical direction as our y-axis, taking the downward direction as our positive axis.
- As both axes are perpendicular each other, both movements are independent each other also, so, in the vertical direction, the stone starts from rest.
- At any moment, it is subject to the acceleration of gravity, g.
- As the acceleration is constant, we can find the vertical displacement (taking the height of the cliff as the initial reference level), using the following kinematic equation:

- Replacing by the values of t, we get the following vertical positions, from the height of the cliff as y = 0:
- y(2) = 2* 9.8 m/s2 = 19.6 m
- y(4) = 8* 9.8 m/s2 = 78.4 m
- y(6) = 18*9.8 m/s2 = 176.4 m
- y(8) = 32*9.8 m/s2 = 313.6 m
- y(10)= 50 * 9.8 m/s2 = 490.0 m
By Newton's 2nd law of motion, F = ma, where F is force, m is mass, and a is acceleration.
Rearranging this equation to find acceleration would give us:
a = F/m
The horizontal force to the right is 10N, because the box is pushed to the right with a force of 20N, and the friction force of 10N opposes that, so:
20N - 10N = 10N
The mass is 2kg.
Putting these values into the equation gives us:
a = F/m
= 10/2
= 5ms^-2
The acceleration of the box is 5ms^-2
Answer:
![[\psi]= [Length^{-3/2}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%3D%20%5BLength%5E%7B-3%2F2%7D%5D)
- This means that the integral of the square modulus over the space is dimensionless.
Explanation:
We know that the square modulus of the wavefunction integrated over a volume gives us the probability of finding the particle in that volume. So the result of the integral

must be dimensionless, as represents a probability.
As the differentials has units of length
for the integral to be dimensionless, the units of the square modulus of the wavefunction has to be:
![[\psi]^2 = [Length^{-3}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%5E2%20%3D%20%5BLength%5E%7B-3%7D%5D)
taking the square root this gives us :
![[\psi] = [Length^{-3/2}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%20%3D%20%5BLength%5E%7B-3%2F2%7D%5D)
Think of the cell membrane as a net and the nutrients are the perfect fit to fall through it. Where the waste is not the right size and will not fit through the holes of the net.