Answer:
5295.3 N
Explanation:
According to law of momentum conservation, the change in momentum of the ball shall be from the momentum generated by the batter force
mv + P = mV
P = mV - mv = m(V - v)
Since the velocity of the ball before and after is in opposite direction, one of them is negative
P = 0.14(44.8 - (-19.5)) = 9 kg m/s
Hence the force exerted to generate such momentum within 1.7ms (0.0017s) is
F = P/t = 9/0.0017 = 5295.3 N
<u>Answer:</u>
Ball will move 92.8125 meter along the cliff in 7.5 seconds.
<u>Explanation:</u>
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
In this case initial velocity = 0 m/s, acceleration = 3.3
, we need to calculate displacement when time = 7.5 seconds.
Substituting

So ball will move 92.8125 meter along the cliff in 7.5 seconds.
The elements which have similar behavior are Barium, strontium and beryllium.
Explanation:
The correct answer is C.)
It has made road vehicles safer because magnetometers are used to detect particles found in radiation emitted during combustion of fuel.
h a v e a g r e a t d a y
Answer:
c. vf is greator than v2, but less than v1
Explanation:
The principle of conservation of linear momentum states that when two or more bodies act upon one another, their total momentum remains constant.
In a system of colliding bodies the total momentum of the system just before the collision is the same as the total momentum just after the collision.
Collisions in which the kinetic energy is conserved are called elastic collision.
Collisions in which the kinetic energy is not conserved are called inelastic collisions. If the two objects stick together after the collision and move with a common velocity, the collision is said to be perfectly inelastic.
<em>The above scenario is a perfectly inelastic collision. The initial velocity of particle 1 was greater than particle 2 before collision. After collision, its velocity will reduce to a final velocity vf as it transfers some of its kinetic energy to particle 2; whereas, the velocity of particle 2 will increase to a final velocity vf as it absorbs some of the kinetic energy of particle 1.</em>
Therefore,
a. vf = v2 is wrong because vf is greater than v2
b. vf is less than v2 is wrong because vf is greater than v2
c. vf is greater than v2, but less than v1 is correct.
d. vf = v1 is wrong because vf is less than v1