Answer:
-1m/s
Explanation:
We can calculate the speed of block A after collision
According to collision theory:
MaVa+MbVb = MaVa+MbVb (after collision)
Substitute the given values
5(3)+10(0) = 5Va+10(2)
15+0 = 5Va + 20
5Va = 15-20
5Va = -5
Va = -5/5
Va = -1m/s
Hence the velocity of ball A after collision is -1m/s
Note that the velocity of block B is zero before collision since it is stationary
Answer:
1353.38 Watt
Explanation:
T₁ = Initial temperature of the house = 35°C
T₂ = Final temperature of the house = 20°C
Δt = Time taken to cool the house = 38 min = 38×60 = 2280 s
m = mass of air in the house = 800 kg
Cv = Specific heat at constant volume = 0.72 kJ/kgK
Cp = Specific heat at constant pressure = 1.0 kJ/kgK
Heat removed
q = mCvΔT
⇒q = 800×720×(35-20)
⇒q = 8640000 J
Average rate of hear removal


∴ Power drawn by the air conditioner is 1353.38 Watt
Answer:
L = 0.635m
Explanation:
This problem involves the concept of stationary waves in pipes. For pipes closed at one end,
The frequency f = nv/4L for n = 1,3,5....n
For pipes open at both ends
f = nv/2L for n = 1,2,3,4...n
Assuming the pipe is closed at one end and that velocity of sound is 343m/s in air. If we are right we will obtain a whole number for n.
The film solution can be found in the attachment below.
They attract and stick together