Answer:
Refer to your periodic table. Lewis dot structures are based off the number of valence electrons an atom has.
Looking at the compounds, we can see that Gallium has three valence electrons in its outer shell and oxygen has six. Oxygen and Gallium are going to share electrons with one another, making a V shape in their diagram.
One Oxygen would make a double bond with a Gallium, leaving one valence electron to another oxygen. That oxygen takes that Final electron. It now has 7 in its outer shell. The remaining Gallium and Oxygen do the same double bond as the one before, leaving the 7 valence electron oxygen with one more electron.
fourth period
The third period is similar to the second, except the 3s and 3p sublevels are being filled. Because the 3d sublevel does not fill until after the 4s sublevel, the fourth period contains 18 elements, due to the 10 additional electrons that can be accommodated by the 3d orbitals.
True, because if it wasn't a chemical reaction it would have proceeded to stay the same. but it begins to bubble.
sorry if this isn't the best answer I'm trying my best.
Answer:
ΔHreaction = 263.15 kJ/mol
Explanation:
The reaction is as follow:
OH + CF₂Cl₂ → HOF + CFCl₂
You need to calculate the enthalpy of reaction and for this it is necessary to know the standard enthalpies for each of the compounds. These enthalpies are as follows and can be found in your textbook or on the Internet.
ΔHreaction = ∑ΔHproducts - ∑ΔHreactants

Answer:
The mass of copper(II) sulfide formed is:
= 81.24 g
Explanation:
The Balanced chemical equation for this reaction is :

given mass= 54 g
Molar mass of Cu = 63.55 g/mol

Moles of Cu = 0.8497 mol
Given mass = 42 g
Molar mass of S = 32.06 g/mol

Moles of S = 1.31 mol
Limiting Reagent :<em> The reagent which is present in less amount and consumed in a reactio</em>n
<u><em>First find the limiting reagent :</em></u>

1 mol of Cu require = 1 mol of S
0.8497 mol of Cu should require = 1 x 0.8497 mol
= 0.8497 mol of S
S present in the reaction Medium = 1.31 mol
S Required = 0.8497 mol
S is present in excess and <u>Cu is limiting reagent</u>
<u>All Cu is consumed in the reaction</u>
Amount Cu will decide the amount of CuS formed

1 mole of Cu gives = 1 mole of Copper sulfide
0.8497 mol of Cu = 1 x 0.8497 mole of Copper sulfide
= 0.8497
Molar mass of CuS = 95.611 g/mol


Mass of CuS = 0.8497 x 95.611
= 81.24 g