A 1. 00 ml sample of an unknown gas effuses in 11. 1 min. an equal volume of h2 in the same apparatus under the same conditions effuses in 2. 42 minutes then the molar mass of the unknown gas is 41.9.
Molar mass of H2 = 2
Molar mass of unknown gas = ?
rate 1 = 11.1
rate 2 = 2.42
<h3>What is graham law? </h3>
Graham's law states that the rate of diffusion or effusion of a given gas is inversely proportional to the square root of its molar mass.
By apply graham law
Rate1/rate2 = sqrt(MW2/MW1)
![[\frac{rate1}{rate2} ]^{2} = \frac{MW2}{2} \\\\\\mw= 2[\frac{11.1}{2.42} ]^{2} \\\\= 20.97 X 2 \\\\= 41.9](https://tex.z-dn.net/?f=%5B%5Cfrac%7Brate1%7D%7Brate2%7D%20%5D%5E%7B2%7D%20%3D%20%5Cfrac%7BMW2%7D%7B2%7D%20%5C%5C%5C%5C%5C%5Cmw%3D%202%5B%5Cfrac%7B11.1%7D%7B2.42%7D%20%5D%5E%7B2%7D%20%5C%5C%5C%5C%3D%2020.97%20X%202%20%5C%5C%5C%5C%3D%2041.9)
Thus, we found that the molar mass of the unknown gas is 41.9.
Learn more about graham's law: brainly.com/question/12415336
#SPJ4
A volcanic <em>eruption</em> occurs when the <em>pressure </em> in a magma <em>chamber</em> becomes so great it is released like a valve. Magma is released through the volcano's <em>cone</em> in an eruption of <em>lava</em> rocks (bombs) and ash. A volcanic <em>cone</em> develops over centuries as flowing <em>lava</em> from the active volcano <em>cools </em>to form layers of rock.
Hope this works,
Ahawk
By definition titraion of a monoprotic acid with means that the equivalence point implies netrality of the solution, which is pH = 7.
So, the answer is that pH will be equal to 7 at the equivalence.
Given that the acid is monoprotic and KOH has one OH- radical per molecule of KOH, the titration will require the same number of moles of acid than base to reach the equivalence point, as you can see in this equation, representing the monoprotic acid as HA:
HA + KOH = K(+) + A(-) + H2O => 1 mol HA per 1 mol KOH.
Answer: although it is convenient to think of the electron moving around the nucleus along circular paths
Explanation: