Answer:
5 fringes option C
Explanation:
Given:
- The wavelength of blue light λ = 450 nm
- The split spacing d = 0.001 mm
Find:
How many bright fringes will be seen?
Solution:
- The relationship between the wavelength of the incident light, grating and number of bright fringes seen on a screen is derived by Young's experiment as follows:
sin(Q) = n* λ / d
Where, n is the order of bright fringe. n = 0, 1, 2, 3, ....
- We need to compute the maximum number of fringes that can be observed with the given condition and setup. Hence we will maximize our expression above by approximating sin(Q).
sin(Q_max) = 1
Q_max = 90 degree
- Hence, we have:
n = d / λ
- plug values in n = 0.001 *10^-3 / 450*10^-9
n = 2.222
- Since n order number can only be an integer we will round down our number to n = 2.
- Hence, we will see a pair of bright fringes on each side of central order fringe.
- Total number of fringes = 2*2 + 1 = 5 fringes is total ... Hence, option C
Answer:
Open circuit
Explanation:
An open circuit is simply an electrical circuit that is not complete. In such a circuit, there is a gap and this will not allow the electric current to pass through.
Despite all the elements being complete in the circuit, an open circuit will halt the flow of electric current and will not do deliver the necessary energy it is supposed to.
In such a circuit, the wires are cut of and not connected properly.
The reverse is a closed circuit.
The step missing is after the number 4. Because, after the antenna captures de modultates waves, it has to be demodulated in order to be able to the signal be heard, seen or used.
So, the answer is that waves are demodulated and it before the signal is heard, seen or used.
The answer is answer chioce B.
Rocks get older as you move away from the water surface