<span>b. It ensures that measurements are taken from two points
that are very far apart.
Measurements taken six months apart are the farthest apart
that an astronomer can ever get ... they're on opposite sides
of the Earth's orbit !</span>
work is distance * force so 15*100=1500
and to find time you know power = diastance * force / time
so 25=15*100/t
25=1500/t
25/1500=t
.016=time
Answer:
d. perfectly elastic
Explanation:
According to the kinetic theory for collisions of gas molecules:
1.The loss of energy is negligible or we can say that it is zero.
2.Molecules of the gas move in a random manner.
3.The collision between molecules and with the wall of the container is perfectly elastic.That is why loss in the energy is zero.
Therefore the correct answer will be d.
d. perfectly elastic
Answer:
A: The acceleration is 7.7 m/s up the inclined plane.
B: It will take the block 0.36 seconds to move 0.5 meters up along the inclined plane
Explanation:
Let us work with variables and set
As shown in the attached free body diagram, we choose our coordinates such that the x-axis is parallel to the inclined plane and the y-axis is perpendicular. We do this because it greatly simplifies our calculations.
Part A:
From the free body diagram we see that the total force along the x-axis is:
Now the force of friction is where is the normal force and from the diagram it is
Thus
Therefore,
Substituting the value for we get:
Now acceleration is simply
The negative sign indicates that the acceleration is directed up the incline.
Part B:
Which can be rearranged to solve for t:
Substitute the value of and and we get:
which is our answer.
Notice that in using the formula to calculate time we used the positive value of , because for this formula absolute value is needed.
Answer:
Resistivity ρ=1.12 x 10^-4 Ωm
Explanation:
ρ= RA/l, where R is resistance, A is cross sectional area and l is length
A=πr^2
Note Current is given R is proportion to temperature and inversely proportional to Current R=(20+273)/14*10^-2 =2000Ω
⇒ρ=R*πr^2/l all length in metre.