The correct answer is option C. <span>This is a demonstration of Boyle’s law. As the volume increases, the pressure decreases, and the marshmallow will grow larger.
</span><span>
Keisha follows the instructions for a demonstration on gas laws.
1. Place a small marshmallow in a large plastic syringe.
2. Cap the syringe tightly.
3. Pull the plunger back to double the volume of gas in the syringe.
Now, this activity is being done at the same temperature, because there is no mention of the temperature change. Thus, when the plunger is pulled back, the volume doubles, so pressure will decrease. Therefore, </span>This is a demonstration of Boyle’s law. As the volume increases, the pressure decreases, and the marshmallow will grow larger.
Answer:
2. mechanical weathering can produce smaller pieces of rock that have more surface area for chemical weathering to work Explanation:
Mechanical weathering involves activities of living organisms or some geological processes. The bigger rocks are usually reduced to smaller rocks and further reduction might be limited or not posibble mechanically. This reduced rocks now increases the surface area available for chemical weathering; which further reduces the sizes of the rocks below the size range of mechanical weathering. one will recall that the rate of chemical reaction increases with exposed surface area.
Answer:
In D: 3J
Explanation:
Potential energy: Ep=mgh where m is the mass, h altitude.
In point A: h=20cm=0.2m
Epa=12=0.2×mg. Thus mg=12/0.2=60N
For point D: hd=5cm=0.05m
Epd=mg×0.05=60×0.05=3J
Answer:
V= 33.98 m/s
Explanation:
Given that
Horizontal speed ,u= 17 m/s
Time taken by rockets to strike the water ,t= 3 s
We know that acceleration due to gravity ,g= 9.81 m/s²
There is no any acceleration in the horizontal direction that is why the horizontal veloity will remain constant.
In the vertical direction
vy = uy+ g t
Initial velocity in vertical direction is 0 m/s.
vy= 0+ 9.81 x 3
vy = 29.43 m/s
The resultant velocity
V= 33.98 m/s
Answer:
(a)
(b) neither increasing or decreasing
(c) opposite to the flow of charge carriers
Explanation:
The current through an inductor of inductance L is given by:
(1)
(a) The induced emf is given by the following formula
(2)
You derivative the expression (1) in the expression (2):
(b) At t=0 the current is zero
(c) At t = 0 the emf is:
w, L and Imax have positive values, then the emf is negative. Hence, the induced emf is opposite to the flow of the charge carriers.
(d) read the text carefully