Answer:
Explanation:
A. White blood cells have many lysosomes because they need to produce a lot of glucose and oxygen.
Lysosomes are found in all animal cells, but are most numerous in disease-fighting cells, such as white blood cells. This is because white blood cells must digest more material than most other types of cells in their quest to battle bacteria, viruses, and other foreign intruders.
Answer:
A: Antibonding molecular orbitals are higher in energy than all of the bonding molecular orbitals.
Explanation:
Molecular orbital theory describes <u>covalent bonds in terms of molecular orbitals</u>, which result from interaction of the atomic orbitals of the bonding atoms and are associated with the entire molecule.
A bonding molecular orbital has lower energy and greater stability than the atomic orbitals from which it was formed. An antibonding molecular orbital has higher energy and lower stability than the atomic orbitals from which it was formed.
Electrons in the antibonding molecular orbital have higher energy (and less stability) than they would have in the isolated atoms. On the other hand, electrons in the bonding molecular orbital have less energy (and hence greater stability) than they would have in the isolated atoms.
<h2>
Hello!</h2>
The answer is:

<h2>
Why?</h2>
Since there is not information about the solute but only its mass, we need to assume that we are calculating the molar concentration of a solution or molarity. So, need to use the following formula:

Now, we know that the mass of the solute is equal 3.5 moles and the volume is equal to 1500 mL or 1.5L
Then, substituting into the equation, we have:

Have a nice day!
Answer:
Chemical
Explanation:
The Chemical formula is the combination of chemical symbols and numbers that represent the elements and number of atoms within a compound.
Answer:
A neutral solution hope it helps