Answer:
1793.7m
Explanation:
From the principle of conservation of energy; the kinetic energy substended by the object equals the potential energy sustain by the object when it gets to its maximum position.
Now the kinetic energy; is
K.E = 1/2 × m × v2
Where m is mass
v is velocity
Hence.
K.E = 1/2 × 2.25 × (187.5)^2
Now this should be same with the potential energy which is given as;
P.E = m× g× h
Where m is mass of object
g is acceleration of free fall due to gravity = 9.8m/S2
h is maximum height substain by the object.
Hence P.E = 2.25 × 9.8 × h
From the foregoing analysis of energy conversation it implies;
1/2 × 2.25 × (187.5)^2 =2.25 × 9.8 × h
=> 1/2 × (187.5)^2 = 9.8 × h
=>1/2 × (187.5)^2 / 9.8 = h
=> 1793.69m = h
h= 1793.69m
h =1793.7m to 1 decimal place
Answer:
During stage 3 - late expanding (of demogrpahic transition model)
Explanation:
During stage 3, birth rate begins to decline as infant mortality is lower and women have more access to education, family planning, and contraceptives. Children are not needed as "free labor" as they might have been in earlier stages.
Answer: The atmosphere of trophic rainforest is hot and humid due to high rate of transpiration.
Explanation:
The tropical rainforest is a biome which exhibit rich biodiversity of plants and animals. The average temperatures in this region remain high with warm summer. It remains frost free. The soil is nutrient deficient. Due to hot temperature the rate of transpiration remains high as a result the concentration of the water vapors remain high. This is responsible for increasing the humidity in the atmosphere also this region receives appreciable amount of rainfall annually. The average rainfall range is 200-450 centimeters.
Answer:
= 2630.6 N.m
Explanation:
(FR)x = ΣFx = -F4 = -407 N
(FR)y = ΣFy =-F1-F2 -F3 = -510 - 306 - 501 = -1317 N
(MR)B =ΣM + Σ(±Fd)
= MA + F1(d1 +d2) + F2d2 - F4d3
= 1504 + 510(0.880+1.11) +306(1.11) - 407(0.560)
= 2630.64 N.m (counterclockwise)
Answer:
Final velocity (v) = 36 m/s
Distance traveled (s) = 2,160 m
Explanation:
Given:
Initial velocity (u) = 0
Acceleration (a) = 0.3 m/s
Time travel (t) = 2 minutes = 120 seconds
Find:
Final velocity (v) = ?
Distance traveled (s) = ?
Computation:
v = u + at
v = 0 + 0.3(120)
v = 0.3(120)
v = 36 m/s
Final velocity (v) = 36 m/s
Distance traveled (s) = ut + (1/2)at²
Distance traveled (s) = (0.5)(0.3 × 120 × 120)
Distance traveled (s) = 2,160 m