Answer:
53.895 m.
Explanation:
Using the equation of motion,
v² = u² + 2as .............. Equation 1
Where v = final velocity of the swan, u = initial velocity of the swan, a = acceleration of the swan, s = distance covered by the swan.
make s the subject of the equation,
s = (v² - u²)/2a----------- Equation 2
Given: v = 6.4 m/s, u = 0 m/s ( from rest) a = 0.380 m/s².
Substitute into equation 2
s = (6.4²-0²)/(2×0.380)
s = 40.96/0.76
s = 53.895 m.
Hence the swan will travel 53.895 m before becoming airborne.
Answer:
F = 294.3 [N]
Explanation:
To solve this problem we must use Newton's second law which tells us that force is equal to the product of mass by acceleration. It is this particular case the acceleration is due to the gravitational acceleration since the body is in free fall.
Therefore we have:
F = m*g
where:
F = force [N]
m = mass = 30 [kg]
g = gravity acceleration = 9.81 [m/s^2]
F = 30*9.81
F = 294.3 [N]
Answer:
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
Explanation:
A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed of the rock at 2m on the way down compare with its speed at 2m on the way up?
It decreases in speed on its way down and increases in speed on its way down.
it decreases in speed on its way up because the the vertical motion is against the earths gravitational pull on an object to the earth's center
.It increases in speed on his way down because its under the influence of gravity
from newton's equation of motion we can check by
using V^2=u^2+2as
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.