Answer:
Explanation:
Image of distant object will be made at far point or at 52.5 so
object distance u = infinity
image distance v = - 52.5 cm
focal length required = f
Lens formula
1 / v - 1 / u = 1 / f
1 / - 52.5 - 0 = 1 / f
f = -52.5 cm
= -.525 m
Power P = 1 / f = - 1 / .525
= - 1.90
now , for eye with glass we shall find new near point .
v = ?
u = - 17.2 cm
f = - 52.5 cm
1 / v - 1 / u = 1 / f
1 / v + 1 / 17.2 = - 1 / 52.5
1 / v = - 1 / 17.2 - 1 / 52.5
= - .05813 - .019
= - .07713
u = - 12.96 cm
so new near point will be 12.96 cm
<span>The Answer is 5200 Joules</span>
Most pictures used as the milky way are actually just pictures of other galaxies (such as Andromeda) that we just figure are similar enough to ours.
<span>We can take a side ways photo of our own galaxy, but not a front view. </span>
Answer:
Question 1)
a) The speed of the drums is increased from 2 ft/s to 4 ft/s in 4 s. From the below kinematic equations the acceleration of the drums can be determined.

This is the linear acceleration of the drums. Since the tape does not slip on the drums, by the rule of rolling without slipping,

where α is the angular acceleration.
In order to continue this question, the radius of the drums should be given.
Let us denote the radius of the drums as R, the angular acceleration of drum B is
α = 0.5/R.
b) The distance travelled by the drums can be found by the following kinematics formula:

One revolution is equal to the circumference of the drum. So, total number of revolutions is

Question 2)
a) In a rocket propulsion question, the acceleration of the rocket can be found by the following formula:

b) 
Answer:
The position of my house is a little uphill as compared to the position of my school. The distance I have to travel from my house to school is nearly 2 kilometers. The displacement is in the 2000 m towards the left from my house. The speed of the bus which I usually take is 40 km/ hour.