I think it's B. Molecules collide more frequently
Explanation:
Formula to calculate hybridization is as follows.
Hybridization =
where,
V = number of valence electrons present in central atom
N = number of monovalent atoms bonded to central atom
C = charge of cation
A = charge of anion
So, hybridization of
is as follows.
Hybridization =
=
= 2
Hybridization of
is sp. Therefore,
is a linear molecule. There will be only two electron groups through which Be is attached.
Similarly, hybridization of
is calculated as follows.
Hybridization =
=
= 5
Therefore, hybridization of
is
is also a linear molecule. Though there are three lone pair of electrons present on a xenon atom and it is further attached with fluorine atoms through two electron pairs. Hence, there are in total five electron groups.
Thus, we can conclude that out of the given options
is the correct examples of linear molecules for five electron groups.
Answer:
[H2] = 0.012 M
[N2] = 0.019 M
[H2O] = 0.057 M
Explanation:
The strategy here is to account for the species at equilibrium given that the concentration of [NO]=0.062M at equilibrium is known and the quantities initially present and its stoichiometry.
2NO(g) + 2H2(g) ⇒ N2(g) + 2H2O(g)
i mol 0.10 0.050 0.10
c mol -0.038 -0.038 +0019 +0.038
e mol 0.062 0.012 00.019 0.057
Since the volume of the vessel is 1.0 L, the concentrations in molarity are:
[NO] = 0.062 M
[H2] = 0.012 M
[N2] = 0.019 M
[H2O] = 0.057 M
Explanation:
Electromagnetic wave Wavelength
(1) Microwave = 1 m to 1 mm =
to 
(2) Ultraviolet = 10 nm to 400 nm
(3) Radio waves = 1 mm to 100 km =
to 
(4) Infrared = 700 nm to 1 mm
(5) X-ray = 0.01 nm to 10 nm
(6) Visible = 400 nm t0 700 nm
a) In order of increasing wavelength:
: 5 < 2 < 6 < 4 < 1 < 3
b) Frequency of the electromagnetic wave given as:

= frequency
= Wavelength
c = speed of light

So, the increasing order of frequency:
: 3 < 1 < 4 < 6 < 2 < 5
c) Energy(E) of the electromagnetic wave is given by Planck's equation :


So, the increasing order of energy:
: 3 < 1 < 4 < 6 < 2 < 5
Answer:
54 grams ammonium chloride and 40 grams sodium hydroxide
Explanation:
A buffer is a solution that contains either a weak acid and its salt or a weak base and its salt, the solution is resistant to changes in pH. This means that, a buffer is an aqueous solution of either a weak acid and its conjugate base or a weak base and its conjugate acid.
A Buffer is used to maintain a stable pH in a solution, buffers can neutralize small quantities of additional acid of base. For any buffer solution, there is always a working pH range and a set amount of acid or base that can be neutralized before the pH will change. The amount of acid or base that can be added to a buffer before changing its pH is called its buffer capacity.
A good buffer mixture is supposed to have about equal concentrations of its both components. It is a rule of thumb therefore, that a buffer solution has generally lost its usefulness when one component of the buffer pair is less than about 10% of the other component.
The implication of this is that the ammonium chloride and sodium hydroxide should be of approximately the same concentration. If the masses are dissolved as shown in the answer, then we will have 1molL-1 of each component of the buffer in accordance with the rule of thumb stated above.