1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alborosie
2 years ago
7

Directions: Using the T-chart below, compare balanced forces and unbalanced forces.

Physics
1 answer:
Salsk061 [2.6K]2 years ago
8 0

Explanation:

unbalanced: a turning vehicle, apple falling on the ground, kicking a ball

balanced: floating on water, fruit hanging from tree, tug of war equally balanced teams

You might be interested in
In a physics lab, you measure the vibrational-rotational spectrum of hcl. the estimated separation between absorption peaks is:_
BlackZzzverrR [31]

The appropriate value in blank given is Δf = 5.5 x 10^{11} Hertz.

We have vibrational - rotational spectrum Hydrochloric Acid.

We have to investigate the estimated separation between absorption peaks and fill the blank.

<h3>What is vibrational - rotational spectrum ?</h3>

Rotational–vibrational spectroscopy is a branch of molecular spectroscopy. It deals with the infrared and Raman spectra of molecules in the gaseous phase.

According to the question -

The estimated separation between absorption peaks in the vibrational-rotational spectrum of HCl is denoted by Δf and is equal to -

Δf = 5.5 x 10^{11} Hertz

Hence, the appropriate value in blank given is Δf = 5.5 x 10^{11} Hertz.

To learn more about vibrational-rotational spectrum, visit the link below-

brainly.com/question/18403840

#SPJ4

8 0
2 years ago
A 1.0 liter pot is filled with water at sea level and is brought to a boil. the same pot is filled with water at 5,000 feet abov
kykrilka [37]
The second pot will boil faster

8 0
4 years ago
An electric air heater consists of a horizontal array of thin metal strips that are each 10 mm long in the direction of an airst
sweet-ann [11.9K]

Answer:

see explanation below

Explanation:

Given that,

T_1 = 500°C

T_2 = 25°C

d = 0.2m

L = 10mm = 0.01m

U₀ = 2m/s

Calculate average temperature

\\T_{avg} = \frac{T_1 + T_2}{2} \\\\T_{avg} = \frac{500 + 25}{2} \\\\T_{avg} = 262.5

262.5 + 273

= 535.5K

From properties of air table A-4 corresponding to T_{avg} = 535.5K \approx 550K

k = 43.9 × 10⁻³W/m.k

v = 47.57 × 10⁻⁶ m²/s

P_r = 0.63

A)

Number for the first strips is equal to

R_e_x = \frac{u_o.L}{v}

R_e_x = \frac{2\times 0.01}{47.57 \times 10^-^6 }\\\\= 420.4

Calculating heat transfer coefficient from the first strip

h_1 = \frac{k}{L} \times 0.664 \times R_e_x^1^/^2 \times P_r^1^/^3

h_1 = \frac{43.9 \times 10^-^3}{0.01} \times 0.664\times420 \times 4^1^/^2 \times 0.683^1^/^3\\\\= 52.6W/km^2

The rate of convection heat transfer from the first strip is

q_1 = h_1\times(L\times d)\times(T_1 - T_2)\\\\q_1 = 52.6 \times (0.01\times0.2)\times(500-25)\\\\q_1 = 50W

The rate of convection heat transfer from the fifth trip is equal to

q_5 = (5 \times h_o_-_5-4\times h_o_-_4) \times(L\times d)\times (T_1 -T_2)

h_o_-_5 = \frac{k}{5L} \times 0.664 \times (\frac{u_o\times 5L}{v} )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.05} \times0.664\times (\frac{2 \times 0.05}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 25.5W/Km^2

Calculating h_o_-_4

h_o_-_4 = \frac{k}{4L} \times 0.664 \times (\frac{u_o\times 4L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.04} \times0.664\times (\frac{2 \times 0.04}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 26.3W/Km^2

The rate of convection heat transfer from the tenth strip is

q_1_0 = (10 \times h_o_-_1_0-9\times h_o_-_9) \times(L\times d)\times (T_1 -T_2)

h_o_-_1_0 = \frac{k}{10L} \times 0.664 \times (\frac{u_o\times 10L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.1} \times0.664\times (\frac{2 \times 0.1}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 16.6W/Km^2

Calculating

h_o_-_9 = \frac{k}{9L} \times 0.664 \times (\frac{u_o\times 9L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.09} \times0.664\times (\frac{2 \times 0.09}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 17.5W/Km^2

Calculating the rate of convection heat transfer from the tenth strip

q_1_0 = (10 \times h_o_-_1_0-9\times h_o_-_9) \times(L\times d)\times (T_1 -T_2)\\\\q_1_0 = (10 \times 16.6 -9\times 17.5) \times(0.01\times 0.2)\times (500 -25)\\\\=8.1W

The rate of convection heat transfer from 25th strip is equal to

q_2_5 = (25 \times h_o_-_2_5-24\times h_o_-_2_4) \times(L\times d)\times (T_1 -T_2)

Calculating h_o_-_2_5

h_o_-_2_5 = \frac{k}{25L} \times 0.664 \times (\frac{u_o\times 25L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.25} \times0.664\times (\frac{2 \times 0.25}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 10.5W/Km^2

Calculating h_o_-_2_4

h_o_-_2_4 = \frac{k}{24L} \times 0.664 \times (\frac{u_o\times 24L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.24} \times0.664\times (\frac{2 \times 0.24}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 10.7W/Km^2

Calculating the rate of convection heat transfer from the tenth strip

q_2_5 = (25 \times h_o_-_2_5-24\times h_o_-_2_4) \times(L\times d)\times (T_1 -T_2)\\\\q_1_0 = (25 \times 10.5 -24\times 10.7) \times(0.01\times 0.2)\times (500 -25)\\\\=5.4W

6 0
4 years ago
______ states that energy cannot be created or destroyed.
Pavel [41]
The answer is a newton second law
4 0
3 years ago
Read 2 more answers
Why are renewable energy resources going to be important in our future
marshall27 [118]
Renewable resources are going to be important in our future because if we use up all of our NON-renewable resources now, then we’ll still have the renewable resources to depend on.
I hope this helped! :-)
3 0
4 years ago
Other questions:
  • Electricity is the _____ of charged particles. movement collection build up
    11·1 answer
  • During a marathon race, a runner’s blood flow increases to 10.0 times her resting rate. Her blood’s viscosity has dropped to 95.
    8·1 answer
  • An aluminum rod of length 3.3 m and crosssectional area 3.8 cm2 is inserted vertically into a thermally insulated vessel contain
    5·1 answer
  • How do speed and velocity differ
    6·1 answer
  • Which is not a unit of volume
    13·1 answer
  • The _______ is responsible for determining the frequency of vibration of the air column in the tube within a wind instrument.
    10·1 answer
  • Newton's third law is applicable only to objects at rest.<br><br> True <br> False
    10·2 answers
  • What can waxing replace?
    15·1 answer
  • The gravitational force between two objects with masses, m1 and m2, separated by a distance "r" is given by F = (Gm1m2)/ r2, whe
    5·1 answer
  • How large is the tension in a rope that is being used to accelerate a 100 kg box upward at 2m/s2?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!