<u>Solution and Explanation:</u>
The following calculation is made in order to find out the area and the final velocity vector.
Using the given information and the data in the question,
m1u1 + m2u2 = (m1 + m2) multiply with v
40000 multiply with ( -20i ) + 60000 multiply with ( 10j ) = 100000 multiply with v
Therefore, v = -8i + 6j
That is |v| = 10 knots towards the 36.86 degree north of the west
Answer:
0.338125 m/s
Explanation:
Applying,
Law of conservation of momentum
m'v' = mv............ Equation 1
Where m' = mass of the first skater, v' = velocity of the first skater, m = mass of the second skater, v = velocity of the second skater.
make v the subject of the equation
v = m'v'/m........... Equation 2
From the question,
Given: m' = 54.1 kg, v' = 0.375 m/s, m = 60 kg
Substitute these values into equation
v = (54.1×0.375)/60
v = 20.2875/60
v = 0.338125 m/s
1. (C.) -Si- is silicone which at room temp is a solid and it's a hard crystalline Brittle rock basically...
2. And it will Be D. NOT C... i can't stand user's who throw out answers for free points....
Answer:
5x10^-3
Explanation:
Hooke's Law states that the force needed to compress or extend a spring is directly proportional to the distance you stretch it.
Hooke's Law can be represented as
<h3> F = kx, </h3>
<em>where F is the force </em>
<em> k is the spring constant</em>
<em> x is the extension of the material </em>
<em />
Plug values in the equation
Step 1 find the original extension
0.045 = (400)x
x = 1.125x 10^-4 m d
Step 2 find the new extension
0.045+2 = 400(x)
2.045 = 400x
x = 5.1125x10^-3
Step 3 subtract the new extension with original
Total extension of the spring = 5.1125x10^-3 - 1.125x 10^-4 m = 5x10^-3
Answer with Explanation:
We are given that
Initial velocity,u=4.5 m/s
Time=t =0.5 s
Final velocity=v=0m/s
We have to find the deceleration and estimate the force exerted by wall on you.
We know that
Acceleration=
Using the formula
Acceleration=
deceleration=a=
We know that
Force =ma
Using the formula and suppose mass of my body=m=40 kg
The force exerted by wall on you
Force=