Answer:
The stress is calculated as 
Solution:
As per the question:
Length of the wire, l = 75.2 cm = 0.752 m
Diameter of the circular cross-section, d = 0.560 mm = 
Mass of the weight attached, m = 25.2 kg
Elongation in the wire, 
Now,
The stress in the wire is given by:
(1)
Now,
Force is due to the weight of the attached weight:
F = mg = 
Cross sectional Area, A = 
Using these values in eqn (1):
-- <span>The gravitational force that you feel when you stand on the surface
of a planet depends on the planet's mass and size. It has </span><span><span>nothing
to do with the planet's orbit. (</span>Of course,"size" is also related to the
planet's mass, density, and surface area.)
-- One possible cause of deforestation is the removal of trees without
adequate replanting.
-- According to Hubble’s Law, the farther away a galaxy is, the faster
it is moving away from us
-- Electromagnetic energy can be defined as energy that moves at
the speed of light. If you conduct experiments to determine whether
the electromagnetic energy is moving in the form of particles or waves,
you find that it behaves as both.</span>
No, the rate of gravity remains constant
Answer:
(a) The resistance of 25m of wire is 3 ohms
(b) the length of this wire that has resistance 22 ohms is 183.33 m
Explanation:
Given;
resistivity of the wire, ρ = 0.12 ohms per meter
(a) The resistance of 25m of wire is calculated as follows;

(b) the length of this wire that has resistance 22 ohms is calculated as;

Answer:
The wavelength of the light is 555 nm.
Explanation:
according to Bragg's law..
n×λ = d×sin(θ)
n is the fringe number
λ is the wavelength of the light
d is the slit separation
θ is the angle the light makes with the normal at the fringe.