Answer:
you plug in and turn on the popper, and then the hot air begins to rise in the popper while cooler air falls. As hot air circulates past the popcorn kernels and so the kernels absorb the hear
Answer:
T = 76.39°C
Explanation:
given,
coffee cup temperature = 95°C
Room temperature= 20°C
expression

temperature at t = 0

T(0) = 95°C
temperature after half hour of cooling

t = 30 minutes


T(30) = 61.16° C
average of first half hour will be equal to

![T = \dfrac{1}{30}[(20t - \dfrac{75 e^{\dfrac{-t}{50}}}{\dfrac{1}{50}})]_0^30](https://tex.z-dn.net/?f=T%20%3D%20%5Cdfrac%7B1%7D%7B30%7D%5B%2820t%20-%20%5Cdfrac%7B75%20e%5E%7B%5Cdfrac%7B-t%7D%7B50%7D%7D%7D%7B%5Cdfrac%7B1%7D%7B50%7D%7D%29%5D_0%5E30)
![T = \dfrac{1}{30}[(20t - 3750e^{\dfrac{-t}{50}}]_0^30](https://tex.z-dn.net/?f=T%20%3D%20%5Cdfrac%7B1%7D%7B30%7D%5B%2820t%20-%203750e%5E%7B%5Cdfrac%7B-t%7D%7B50%7D%7D%5D_0%5E30)
![T = \dfrac{1}{30}[(20\times 30 - 3750 e^{\dfrac{-30}{50}} + 3750]](https://tex.z-dn.net/?f=T%20%3D%20%5Cdfrac%7B1%7D%7B30%7D%5B%2820%5Ctimes%2030%20-%203750%20e%5E%7B%5Cdfrac%7B-30%7D%7B50%7D%7D%20%2B%203750%5D)
![T = \dfrac{1}{30}[600 - 2058.04 + 3750]](https://tex.z-dn.net/?f=T%20%3D%20%5Cdfrac%7B1%7D%7B30%7D%5B600%20-%202058.04%20%2B%203750%5D)
T = 76.39°C
Answer:
D. from a separate pool than is the control group.
Explanation:
in the picture the person answers is backwards but...
hope this helps have a nice day
Answer:
The ratio of lengths of the two mathematical pendulums is 9:4.
Explanation:
It is given that,
The ratio of periods of two pendulums is 1.5
Let the lengths be L₁ and L₂.
The time period of a simple pendulum is given by :

or

Where
l is length of the pendulum

or
....(1)
ATQ,

Put in equation (1)

So, the ratio of lengths of the two mathematical pendulums is 9:4.
Answer:
I = 1.4kgm²
Explanation:
The rotational motion is caused by the frictional force, which generates a torque on the system. As there is no other force that creates a torque, this can be expressed in the equation of rotational motion below:

And
, where r is the distance from the point of application and the rotation axis, and f is the magnitude of the frictional force. This is because the frictional force is applied in the direction that causes the greatest angular acceleration (this is, 90°) and
. Then, we have that:

Plugging in the given values, we obtain:

In words, the total moment of inertia is equal to 1.4kgm².