Answer:
From the second law of motion:
F = ma
we are given that the force applied on the block is 20N and the block accelerates at an acceleration of 4 m/s/s
So, F= 20N and a = 4 m/s/s
Replacing the variables in the equation:
20 = 4* m
m = 20 / 4
m = 5 kg
In my opinion, the answer would be d: a universal language. D would technically be more important because there are so many foreign scientific companies and to get the information we need to study the universe, we should communicate and give eachother what we have of our resources as we work for it.
Complete question:
A taut rope has a mass of 0.123 kg and a length of 3.54 m. What average power must be supplied to the rope to generate sinusoidal waves that have amplitude 0.200 m and wavelength 0.600 m if the waves are to travel at 28.0 m/s ?
Answer:
The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.
Explanation:
Velocity = Frequency X wavelength
V = Fλ ⇒ F = V/λ
F = 28/0.6 = 46.67 Hz
Angular frequency (ω) = 2πF = 2π (46.67) = 93.34π rad/s
Average power supplied to the rope will be calculated as follows

where;
ω is the angular frequency
A is the amplitude
V is the velocity
μ is mass per unit length = 0.123/3.54 = 0.0348 kg/m
= 1676.159 watts
The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.
Answer:
--..-...-...-.---..-...-...
It's false. Mass is a way of measuring how much matter an object contains, where as weight measures how hard gravity is pulling on an object. While on earth, these are typically interchangeable. However, if you were to go to Mars, your mass would stay the same, but the weight will be different. This is because you still contain the same amount of matter, but the gravity's pull will be different because the moon has a different gravitational pull than the earth. Hope this helps!