1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
4 years ago
13

Concerning the work done by a conservative force, which of the following statements, if any, are true? It can always be expresse

d as the difference between the initial and final values of a potential energy function. It is independent of the path of the body and depends only on the starting and ending points. When the starting and ending points are the same, the total work is zero.
Physics
1 answer:
Vera_Pavlovna [14]4 years ago
3 0

Answer:

It is independent of the path of the body and depends only on the starting and ending points.

Explanation:

In Physics we define a conservative force as a force that is independent of the path of the body and depends only on the starting and ending points.

For conservative forces we can write;

KEi + PEi = KEf +PEf

where;

KEi= initial kinetic energy

PEi= initial potential energy

KEf= final kinetic energy

PEf= final potential energy

This equation is known as the principle conservation of mechanical energy . It applies only to conservative forces where friction is negligible. The term KE + PE  is also known as the total mechanical energy of the system.

You might be interested in
A solenoid 25.0 cmcm long and with a cross-sectional area of 0.550 cm^2 contains 460 turns of wire and carries a current of 90.0
ankoles [38]

Answer:

a.  B = 0.20T

b.  u = 17230.6 J/m³

c.  E = 0.236J

d.  L = 5.84*10^-5 H

Explanation:

a. In order to calculate the magnetic field in the solenoid you use the following formula:

B=\frac{\mu_o n i}{L}               (1)

μo: magnetic permeability of vacuum = 4π*10^-7 T/A

n: turns of the solenoid = 460

L: length of the solenoid = 25.0cm = 0.25m

i: current  = 90.0A

You replace the values of the parameters in the equation (1):

B=\frac{(4\pi*10^{-7}T/A)(460)(90.0A)}{0.25m}=0.20T

The magnetic field in the solenoid is 0.20T

b. The magnetic permeability of air is approximately equal to the magnetic permeability of vacuum. To calculate the energy density in the solenoid you use:

u=\frac{B^2}{2\mu_o}=\frac{(0.20T)^2}{2(4\pi*10^{-7}T/A)}=17230.6\frac{J}{m^3}

The energy density is 17230.6 J/m³

c. The total energy contained in the solenoid is:

E=uV           (2)

V is the volume of the solenoid and is calculated by assuming the solenoid as a perfect cylinder:

V=AL

A: cross-sectional area of the solenoid = 0.550 cm^2 = 5.5*10^-5m^2

V=(5.5*10^{-5}m^2)(0.25m)=1.375*10^{-5}m^3

Then, the energy contained in the solenoid is:

E=(17230.6J/m^3)(1.375*10^{-5}m^3)=0.236J

The energy contained is 0.236J

d. The inductance of the solenoid is calculated as follow:

L=\frac{\mu_o N^2 A}{L}=\frac{(4\pi*10^{-7}T/A)(460)^2(5.5*10^{-5}m^2)}{0.25m}\\\\L=5.84*10^{-5}H

The inductance of the solenoid is 5.84*10^-5 H

3 0
4 years ago
All biomes don’t have the same level of biodiversity. What seems to be the optimal conditions for high biodiversity?
irinina [24]

Answer:

See the answer below

Explanation:

The optimal conditions for high biodiversity seem to be a <u>warm temperature</u> and <u>wet climates</u>.

<em>The tropical areas of the world have the highest biodiversity and are characterized by an average annual temperature of above 18 </em>^oC<em> and annual precipitation of 262 cm. The areas are referred to as the world's biodiversity hotspots. </em>

Consequently, it follows logically that the optimal conditions for high biodiversity would be a warm temperature of above 18 ^oC and wet environment with annual precipitation of not less than 262 cm.

The variation in temperature and precipitation across biomes can thus be said to be responsible for the variation in the level of biodiversity in them.

6 0
3 years ago
A swimmer swims at 5 m/s. How long would it take to swim 5 laps of a 50m pool?​
Gre4nikov [31]
About 5 hours gooood luck
3 0
1 year ago
The force applied when using a simple machine ??
beks73 [17]
Answer : I hope this helps !

The Effort Force is the force applied to a machine. Work input is the work done on a machine. The work input of a machine is equal to the effort force times the distance over which the effort force is exerted.
8 0
3 years ago
An 8.00- W resistor is dissipating 100 watts. What are the current through it and the difference of potential across it?
hjlf

Answer:

I= 3.5 amps

Explanation:

Step one:

given data

rating of resistor R= 8 ohms

power P= 100W

Required

The current I

Step two

Yet this power is also given by

P = I^2R

make I subject of the formula we have

I= \sqrt{\frac{P}{R} }

substitute

I= \sqrt{\frac{100}{8} }\\\\I=\sqrt{12.5}\\\\I= 3.5 amps

8 0
3 years ago
Other questions:
  • How much money did congress authorize to be spent on its construction
    13·1 answer
  • at 1 p.m. a car traveling at a constant velocity of 78 km per hour towards the West it's 34 km to the west of our school how far
    9·1 answer
  • Which is a unique feature of Venus? A. Its surface is well below freezing. B. Its surface is hot enough to melt lead. C. It has
    5·2 answers
  • What are some applications of Kepler’s laws still in use today?
    14·2 answers
  • A charge alters the space around it. What is this alteration of space called? Electric ether Electric Force Electric field Charg
    9·1 answer
  • A block slides on a frictionless, horizontal surface with a speed of 1.32 m/s. The block encounters an unstretched spring and co
    14·1 answer
  • Why do your legs appear shorter when standing in water
    7·1 answer
  • Jax fell while running and cut his knee. He noticed at the end of the day that his body had produced a hard film over his scrape
    7·1 answer
  • Calculate The voltage if the current passing through the wire is 3A, and has a resistance of 10 Q
    9·1 answer
  • Two gliders on an air track collide in a perfectly elastic collision. Glider A has a mass of 1.1 kg and is initially travelling
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!