Answer:
(a) 0.613 m
(b) 0.385 m
(c) vₓ = 1.10 m/s, vᵧ = 3.50 m/s
v = 3.68 m/s², θ = 72.6° below the horizontal
Explanation:
(a) Take down to be positive.
Given in the y direction:
v₀ = 0 m/s
a = 10 m/s²
t = 0.350 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (0.350 s) + ½ (10 m/s²) (0.350 s)²
Δy = 0.613 m
(b) Given in the x direction:
v₀ = 1.10 m/s
a = 0 m/s²
t = 0.350 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (1.10 m/s) (0.350 s) + ½ (0 m/s²) (0.350 s)²
Δx = 0.385 m
(c) Find: vₓ and vᵧ
vₓ = aₓt + v₀ₓ
vₓ = (0 m/s²) (0.350 s) + 1.10 m/s
vₓ = 1.10 m/s
vᵧ = aᵧt + v₀ᵧ
vᵧ = (10 m/s²) (0.350 s) + 0 m/s
vᵧ = 3.50 m/s
The magnitude is:
v² = vₓ² + vᵧ²
v = 3.68 m/s²
The direction is:
θ = atan(vᵧ / vₓ)
θ = 72.6° below the horizontal
The conversion for km to inches is:
1km=39370.1in
Now we can solve for 56 km..
56km=39370.1*56
56km=<span> 2204725.6in
Answer=2,204,725.6in</span>
Answer: thermal
Explanation:
Moving particles transfer thermal energy through a fluid by forming convection currents.
Answer:
The mass will accelerate. Balanced Forces: When forces are in balance, acceleration is zero. Velocity is constant and there is no net or unbalanced force. A plane will fly at constant velocity if the acceleration is zero.
Explanation:
Answer:
Explanation:
To solve this problem we use the Hooke's Law:
(1)
F is the Force needed to expand or compress the spring by a distance Δx.
The spring stretches 0.2cm per Newton, in other words:
1N=k*0.2cm ⇒ k=1N/0.2cm=5N/cm
The force applied is due to the weight

We replace in (1):
We solve the equation for m: