Answer:
330.5 m
Explanation:
In this case, the object is launched horizontally at 30° with an initial velocity of 40 m/s .
The maximum height will be calculated as;

where ∝ is the angle of launch = 30°
vi= initial launch velocity = 40 m/s
g= 10 m/s²
h= 40²*sin²40° / 2*10
h={1600*0.4132 }/ 20
h= 661.1/2 = 330.5 m
Ions and electrons -apex!
Answer: please find the answer in the explanation.
Explanation:
Harmonic can be experienced by any body that repeats itself. The pattern can be sinusoidal, square, tooth etc.
The fundamental differences between the harmonic oscillator dynamics and the simple pendulum dynamics are:
1.) The harmonic oscillator dynamics can be sinusoidal or square wave so far the motion is periodic while the simple pendulum dynamics is always sinusoidal.
2.) In simple pendulum dynamics, the period of oscillation is independent of the amplitude. While the period in harmonic oscillator dynamics depends on the amplitude.
3.) Differential equation is only one method to analyze the simple pendulum dynamics where there are several methods to analyze the harmonic oscillator dynamics.
Answer:
The Statement is wrong because the reverse is the case as it is the kinetic energy that is being transformed to gravitational potential energy.
Explanation:
As your friend throws the baseball into the air the ball gains an initial velocity (u) and this makes the Kinetic energy to be equal to

Here m is the mass of the baseball
Now as this ball moves further upward the that velocity it gained reduce due to the gravitational force and this in turn reduces the kinetic energy of the ball and this kinetic energy lost is being converted to gravitational potential energy which is mathematically represented as (m×g×h)
as energy can not be destroyed but converted to a different form according to the first law of thermodynamics
Looking a the formula for gravitational potential energy we see that the higher the ball goes the grater the gravitational potential energy.