Answer:
P > 142.5 N (→)
the motion sliding
Explanation:
Given
W = 959 N
μs = 0.3
If we apply
∑ Fy = 0 (+↑)
Ay + By = W
If Ay = By
2*By = W
By = W / 2
By = 950 N / 2
By = 475 N (↑)
Then we can get F (the force of friction) as follows
F = μs*N = μs*By
F = 0.3*475 N
F = 142.5 N (←)
we can apply
P - F > 0
P > 142.5 N (→)
the motion sliding
Answer:
Gross building area
Explanation:
The Gross building area refers to the entire area of a building covering all the floors. The measurement is expressed in square feet. The Gross building area also includes basements, penthouses, and mezzanines. It is calculated by estimating the exterior dimension of the building. Storage rooms, laundries, staircases are also a part of the gross building area.
Answer:

Explanation:
We have to combine the following formula to find the mass yield:


The diffusion coefficient : 
The area : 
Time : 
ΔC: 
Δx: 
Now substitute the values

![M=-(6.0*10^{-8} m/s^{2})(0.25 m^{2})(3600 s/h)[(0.64-3.0kg/m^{3})(3.1*10^{-3}m)]](https://tex.z-dn.net/?f=M%3D-%286.0%2A10%5E%7B-8%7D%20m%2Fs%5E%7B2%7D%29%280.25%20m%5E%7B2%7D%29%283600%20s%2Fh%29%5B%280.64-3.0kg%2Fm%5E%7B3%7D%29%283.1%2A10%5E%7B-3%7Dm%29%5D)

Answer:
- resistance (ohms) will stay the same
- amps will double
Explanation:
Assuming linear circuit elements being operated within their ratings, ...
- resistance (ohms) will stay the same
- amps will double
For constant resistance, current is proportional to voltage. For a circuit in which resistance is not affected by voltage or temperature, the resistance will stay the same when voltage increases. Then the current will be proportional to the voltage.
__
<em>Additional comments</em>
In some circuits, resistance is a function of temperature. An incandescent light, for example, increases its resistance as its temperature goes up. When voltage is increased, resistance is increased according to the increased power dissipation. Current increases, but not proportionally to voltage.
Some other devices also exhibit this effect, but their resistance is designed to increase to a high enough level that overall circuit current actually decreases when voltage exceeds a certain threshold.