Most likely gravity, because the gravity would pull it off course or wobble.
Answer: m∠P ≈ 46,42°
because using the law of sines in ΔPQR
=> sin 75°/ 4 = sin P/3
so ur friend is wrong due to confusion between edges
+) we have: sin 75°/4 = sin P/3
=> sin P = sin 75°/4 . 3 = (3√6 + 3√2)/16
=> m∠P ≈ 46,42°
Explanation:
Answer:
90°
Explanation:
The angle will be 90° when momentum for a system can be conserved in one direction while not being conserved in another.
The example can be
If we apply force on an object horizontally in west direction, then as in other direction south or north we cannot apply the principal of momentum conservation.
Answer:
Final speed of striped ball is 3 m/s in left direction .
Explanation:
Given :
Two billiard ball with the same mass moves toward the left at the same speed 3 m/s .
Let , us assume right hand side direction to be positive and left hand side direction to be negative .
Also , let speed of ball after collision is (striped ball ) u and (solid ball) v .
It is also given that the collision is elastic .
Therefore , kinetic energy is conserved .
...... ( 1 )
Also , by conserving linear momentum .
We get :
...... ( 2 )
Putting value of u from equation 2 to equation 1 .
We get :

And , u = -3 m/s .
Therefore , final speed of striped ball is 3 m/s in left direction .
Hence , this is the required solution .
Answer:
699.67ft
Explanation:
We are given with,
- α = 1.2×10⁻⁵ / °C
- L₀ = 700 ft
- ΔT = -10°C − 30°C = -40°C
Now, We have to find ΔL:
- ΔL = (1.2×10⁻⁵ / °C) (700 ft) (-40°C)
- ΔL = −0.336
Rounded to two significant figures, the change in length is −0.33ft.
<u>Therefore, the final length is approximately 700 ft − 0.33 ft = 699.67ft</u>.