Both the speed and the direction of a wave could change
at the beginning and end of the medium, when the wave
crosses from one medium into a different one.
But while the wave is moving from one place to another place
in the same medium, its speed and direction don't change.
To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:


Where,
m = mass
= mass at inlet
= Mass at outlet
= Enthalpy at inlet
= Enthalpy at outlet
W = Work done
Q = Heat transferred
= Velocity at inlet
= Velocity at outlet
= Height at inlet
= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects


Using the relation T-P we can find the final temperature:



From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK
So:




Therefore the maximum theoretical work that could be developed by the turbine is 678.248kJ/kg
The athlete is doing work because he prevents the weight from falling downward
Answer:
d. 60
Explanation:
If a body of mass 2 kg is moving with a velocity of 30 m/s, then
on doubling its velocity the momentum becomes
a 30 kgm/s
b 90 kgm/s
C 120 kgm/s
d 60 kgm/s
HALPLPLPPLL
Explanation:
a. A grocery bag as you lift it up
b. A crane moving dirt......
d. A crate as you push it along the floor