Answer:
<h2>True</h2>
Explanation:
That's my answer hope it helped
Answer:
0.025V + (0.000218V/s³) t³
Explanation:
Parameters given:
Radius of coil, r = 3.85 cm = 0.0385 m
Number of turns, N = 450
Magnetic field, B = ( 1.20×10^(−2) T/s )t + (2.60×10^(−5) T/s4 )t^4.
The magnitude of Induced EMF is given as:
E = N * A * dB/dt
Where A is the area of the coil
First, we differentiate the magnetic field with respect to time:
dB/dt = 0.012 + 0.000104t³
Therefore, EMF will be:
E = 450 * 3.142 * (0.012 + 0.000104t³)
E = 2.096(0.012 + 0.000104t³)
E = 0.025V + (0.000218V/s³)t³
Answer:
The applied torque is 3.84 N-m.
Explanation:
Given that,
Moment of inertia of the wheel is 
Initial speed of the wheel is 0 (at rest)
Final angular speed is 25 rad/s
Time, t = 13 s
The relation between moment of inertia and torque is given by :

So, the applied torque is 3.84 N-m.
<span>b. weakens as 1/d, where d is the distance between objects.</span>