Answer:
Explanation:
The strong bases have following properties:
1. In solution, strong bases ionize fully.
2. On dissolving the strong bases in water they produce all hydroxide ion which they have.
3. For strong bases the value of equilibrium constant (Kb ) is large.
4. In general the strong base ionizes completely means concentration of ions are greater means conductivity also greater.
5. For strong bases the value of equilibrium constant (Kb) is large, thus the value of dG0 is very large negative number.
The reaction will generally form more reactants than products.
The mass defect for the isotope thorium-234 if given mass is 234.04360 amu is 1.85864 amu.
<h3>How do we calculate atomic mass?</h3>
Atomic mass (A) of any atom will be calculated as:
A = mass of protons + mass of neutrons
In the Thorium-234:
Number of protons = 90
Number of neutrons = 144
Mass of one proton = 1.00728 amu
Mass of one neutron = 1.00866 amu
Mass of thorium-234 = 90(1.00728) + 144(1.00866)
Mass of thorium-234 = 90.6552 + 145.24704 = 235.90224 amu
Given mass of thorium-234 = 234.04360 amu
Mass defect = 235.90224 - 234.04360 = 1.85864 amu
Hence required value is 1.85864 amu.
To know more about Atomic mass (A), visit the below link:
brainly.com/question/801533
I want to say addition. But I have a tendency to be wrong
Answer:
The pressure in that cylinder = 1.12atm
Explanation:
We use general gas law to calculate it. General gas law is gotten by combining Boyle's law, Charles' law and Avogadro's law. Thus
P = nRT/V
Where n = number of moles
R = the gas constant
T is the Temperature, V is the volume and P is the pressure.
Given: T = 319K, V = 24L, R = 0.0821 L.atm/K.mol
The first step is to find n using
n = mass of O2/molar mass of O2
=32.7/32
=1.0219
Now, using P =nRT/V
P = 1.0219 ×0.0821×319÷24
Therefore P = 1.12atm