Answer:
20 ms¯¹
Explanation:
3. Determination of the final velocity
From the question given above, the following data were obtained:
Time (t) = 4 s
Acceleration (a) = 5 ms¯²
Initial velocity (u) = 0 ms¯¹
Final velocity (v) =?
Acceleration is simply defined as the change in velocity per unit time.
Mathematically, it can be expressed as:
Acceleration (a) = final velocity – Initial velocity / time
a = v – u / t
With the above formula, we can obtain the final velocity of the car as follow:
Time (t) = 4 s
Acceleration (a) = 5 ms¯²
Initial velocity (u) = 0 ms¯¹
Final velocity (v) =?
a = v – u / t
5 = v – 0 / 4
5 = v / 4
Cross multiply
v = 5 × 4
v = 20 ms¯¹
Thus, the final velocity of the car is 20 ms¯¹
Answer:
option 4
Explanation:
Light's velocity in air ( 3 × 10^8 m/s ) is much greater than sound's velocity in air ( 343 m/s )
Hence due to difference in velocities , during lightning light is seen first & sound is heard later
I'll tell you how I look at this, although I may be missing something important.
Position = x(t) = 0.5 sin(pt + p/3)
Speed = position' = x'(t) = 0.5 p cos(pt + p/3)
Acceleration = speed' = position ' ' = x ' '(t) = -0.5 p² sin(pt + p/3)
At (t = 1.0),
x ' '(t) = -0.5 p² sin( 4/3 p )
In order to evaluate this, don't I still have to know what 'p' is ? ?
I don't think it can be evaluated with the information given in the question.
Yes. Think of block sitting on top of a bigger block. If the bottom block moves, it will drag the top block with it. Since the force of friction on the small block and its displacement are in the same direction, the "work" is positive. The static friction is a passive force, It is not a source of energy; it transmits the force placed on the bottom block. (And the "work" done by the friction on the bottom block is exactly the negative of the work done on the top block.)