Answer:
2.16×10⁻⁶ N
Explanation:
Applying,
F = kqq'/r² (coulomb's Law)....................... Equation 1
Where F = electrostatic force, k = coulomb's constant, q = charge on the styrofoam, q' = charge on the grain of salt, r = distance between the charges.
From the question,
Given: q = 0.002 mC = 2.0×10⁻⁶ C, q' = 0.03 nC = 3.0×10⁻¹¹ C, r = 0.5 m
Constant: k = 8.99×10⁹ Nm²/C²
Substitute these values into equation 1
F = (2.0×10⁻⁶)(3.0×10⁻¹¹)(8.99×10⁹)/0.5²
F = 2.16×10⁻⁶ N
Answer:
Explanation:
The angular momentum of that same disk-sphere remains unchanged the very same way before and after the impact of the collision when the clay sphere adheres to the disk.
= constant.
The overall value of such moment of inertia is now altered when the clay spherical sticks. Due to the inclusion of the clay sphere, the moment of inertia will essentially rise. As a result of this increase, the angular speed w decreases in value.
Recall that:
The Kinetic energy is given by:

where;
is constant and w reduces;
As a result, just after the collision, the system's total kinetic energy decreases.
Answer:
film is at distance of 3.07 cm from lens
Explanation:
Given data
focal length = 3.06 cm
distance = 10.4 m = 1040 cm
to find out
How far must the lens
solution
we apply here lens formula that is
1/f = 1/p + 1/q
here f = 3.06 and p = 1040 so we find q
1/f = 1/p + 1/q
1/3.06 = 1/1040 + 1/q
1/ q = 0.3258
q = 3.0690 cm
so film is at distance of 3.07 cm from lens
Answer:
V = 6.3 m/s
Explanation:
Given:
m₁ = 2 kg
m₂ = 18 kg
m₃ = 9 kg
V₁ = 10 m/s
V₂ = 8 m/s
V₃ = 2 m/s
__________
V - ?
Let us write the momentum conservation law for an inelastic impact:
m₁·V₁ + m₂·V₂ + m₃·V₃ = (m₁ +m₂ + m₃) ·V
Cart speed after interaction:
V = ( m₁·V₁ + m₂·V₂ + m₃·V₃ ) / (m₁ +m₂ + m₃)
V = (2·10 + 18·8 + 9·2) / ( 2 + 18 + 9) = 182 / 29 ≈ 6.3 m/s
Answer:
m2 = 83.3 g
Explanation:
by conservation of momentum principle we have

as both sphere has same speed so 

from conservation of kinetic energy principle we have




substituting this value in above equation to get m2 value

solving for m2 we get

m_1 = 250 g

m2 = 83.3 g