Let the cold water go up x degrees.
Let the hot water go down 100 - x degrees.
The formula for heat exchange is m*c*delta t
Givens
Ice
deltat = x
m = 0.50 kg
c = 4.18
Hot water
deltat = 100 - x
m = 1.5 kg
c = 4.18
Formula
The heat up = heat down
0.50 * c * x = 1.5 * c * (100 - x) Divide both sides by c
Solution
0.50 *x = 1.5*(100 - x) Remove the brackets.
0.5x = 150 - 1.5x Add 1.5x to both sides.
0.5x + 1.5x = 150 - 1.5x + 1.5x Combine like terms
2x = 150 Divide by 2
x = 75
Answer
A
Answer:
1807.56 kJ
Explanation:
Parameters given:
Current, I = 8.9A
Time, t = 4.7hrs = 4.7 * 3600 = 16920 secs
Voltage, V = 12V
Electrical energy is given as:
E = I*V*t
Where I = Current
V = Voltage/Potential differenxe
t = time in seconds.
E = 8.9 * 12 * 16920
E = 1807056 J = 1807.056 kJ
Answer:
hey mate
answer is probably voltage as per me
as
Explanation:
Voltage, electric potential difference, electric pressure or electric tension is the difference in electric potential between two points, which is defined as the work needed per unit of charge to move a test charge between the two points
Answer:
The pressure and maximum height are
and 161.22 m respectively.
Explanation:
Given that,
Diameter = 3.00 cm
Exit diameter = 9.00 cm
Flow = 40.0 L/s²
We need to calculate the pressure
Using Bernoulli effect

When two point are at same height so ,
....(I)
Firstly we need to calculate the velocity
Using continuity equation
For input velocity,




For output velocity,


Put the value into the formula



(b). We need to calculate the maximum height
Using formula of height

Put the value into the formula



Hence, The pressure and maximum height are
and 161.22 m respectively.