1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Readme [11.4K]
4 years ago
6

A "biconvex" lens is one in which both surfaces of the lens bulge outwards. Suppose you had a biconvex lens with radii of curvat

ure with magnitudes of |R1|=10cm and |R2|=15cm. The lens is made of glass with index of refraction nglass=1.5. We will employ the convention that R1 refers to the radius of curvature of the surface through which light will enter the lens, and R2 refers to the radius of curvature of the surface from which light will exit the lens.
C) What is the focal length of the lens if it is immersed in water (nwater = 1.3)
f= ____________ cm

What is the focal length f of this lens in air (index of refraction for air is nair=1)?
Physics
2 answers:
Talja [164]4 years ago
8 0

Answer:

focal length of the lens when immersed in water is 150cm

focal length of the lens if it is in air is 60cm.

It can be calculated using the equation

1/f = (Refractive index of the glass - Reflective index of the medium)x[ 1/R1 - 1/R2]

Where R1 is the radius of curvature of the surface through which light will enter the lens, and

R2 is the radius of curvature of the surface from which light will exit the lens.

Explanation:

Since n-water = 1.3

focal length of the lens if it is immersed in water is

1/f = (n - 1.3)[1/R2 -1/R1]

1/f = (1.5 - 1.3)[1/10 - 1/15]

1/f = 0.2 x (2/60)

f = 60/0.4 = 150cm

Since n-air = 1

focal length of the lens if it is in air is calculated as:

1/f = (n - 1)[1/R2 -1/R1]

1/f = (1.5 - 1)[1/10 - 1/15]

1/f = 0.5 x (2/60)

f = 60/1= 60cm

Note: The values are measured in centimetre and not converted to metre

Stolb23 [73]4 years ago
5 0

Answer: f=150cm in water and f=60cm in air.

Explanation: Focal length is a measurement of how strong light is converged or diverged by a system. To find the variable, it can be used the formula:

\frac{1}{f} = (nglass - ni)(\frac{1}{R1} - \frac{1}{R2}).

nglass is the index of refraction of the glass;

ni is the index of refraction of the medium you want, water in this case;

R1 is the curvature through which light enters the lens;

R2 is the curvature of the surface which it exits the lens;

Substituting and calculating for water (nwater = 1.3):

\frac{1}{f} = (1.5 - 1.3)(\frac{1}{10} - \frac{1}{15})

\frac{1}{f} = 0.2(\frac{1}{30})

f = \frac{30}{0.2} = 150

For air (nair = 1):

\frac{1}{f} = (1.5 - 1)(\frac{1}{10} - \frac{1}{15})

f = \frac{30}{0.5} = 60

In water, the focal length of the lens is f = 150cm.

In air, f = 60cm.

You might be interested in
Prank text my sister, I wanna see her reaction.<br><br> ‪(346) 298-3870‬
dlinn [17]

Answer:

she is going to be mad dude

4 0
3 years ago
What is the average speed of a race car that moved 20 kilometers in 10 minutes?
Nadya [2.5K]

Answer:21

Explanation:every body said

8 0
3 years ago
What is the driving force for (a) heat transfer, (b) electric current, and (c) fluid flow?
lara31 [8.8K]

Answer:

The driving force for (a) heat transfer is temperature difference. (b) electric current is voltage difference. (c) fluid flow is pressure or hydraulic head difference.

Explanation: (a) The driving force for heat transfer is temperature difference. Heat transfer between two mediums is possible only if the two mediums are at different temperature, the higher the temperature, the higher the heat transfer.

(b) The driving force for electric current is voltage difference. Voltage difference is defined as the potential difference in charge between two points in electrical field. For electric current to occur,the voltage must be high.

(c) The driving force for fluid flow is pressure difference or hydraulic head difference. For fluid to move upward,it requires energy.

3 0
3 years ago
A girl of mass m1=60 kilograms springs from a trampoline with an initial upward velocity of v1=8.0 meters per second. At height
AleksandrR [38]

a) 5.0 m/s

This first part of the problem can be solved by using the conservation of energy. In fact, the mechanical energy of the girl just after she jumps is equal to her kinetic energy:

E_i=\frac{1}{2}m_1v_1^2

where m1 = 60 kg is the girl's mass and v1 = 8.0 m/s is her initial velocity.

When she reaches the height of h = 2.0 m, her mechanical energy is sum of kinetic energy and potential energy:

E_f = \frac{1}{2}m_1 v_2 ^2 + m_1 gh

where v2 is the new speed of the girl (before grabbing the box), and h = 2.0m. Equalizing the two equations (because the mechanical energy is conserved), we find

\frac{1}{2}m_1 v_1^2 = \frac{1}{2}m_1 v_2 ^2 + m_1 gh\\v_1^2 = v_2^2 +2gh\\v_2 = \sqrt{v_1^2 -2gh}=\sqrt{(8.0 m/s)^2-(2)(9.8 m/s^2)(2.0 m)}=5.0 m/s

b) 4.0 m/s

After the girl grab the box, the total momentum of the system must be conserved. This means that the initial momentum of the girl must be equal to the total momentum of the girl+box after the girl catches the box:

p_i = p_f\\m_1 v_2 = (m_1 + m_2) v_3

where m2 = 15 kg is the mass of the box. Solving the equation for v3, the combined velocity of the girl+box, we find

v_3 = \frac{m_1 v_2}{m_1 + m_2}=\frac{(60 kg)(5.0 m/s)}{60 kg+15 kg}=4 m/s

c) 2.8 m

We can use again the law of conservation of energy. The total mechanical energy of the girl after she catches the box is sum of kinetic energy and potential energy:

E_i = \frac{1}{2}(m_1+m_2) v_3^2 + (m_1+m_2)gh=\frac{1}{2}(75 kg)(4 m/s)^2+(75 kg)(9.8 m/s^2)(2.0m)=2070 J

While at the maximum height, the speed is zero, so all the mechanical energy is just potential energy:

E_f = (m_1 +m_2)gh_{max}

where h_max is the maximum height. Equalizing the two expressions (because the mechanical energy must be conserved) and solving for h_max, we find

E_i = (m_1+m_2)gh_{max}\\h_{max}=\frac{E_i}{(m_1+m_2)g}=\frac{2070 J}{(75 kg)(9.8 m/s^2)}=2.8 m

4 0
3 years ago
hich muscle fibers are best suited for activities that involve lifting large, heavy objects for a short period of time? cardiac
Temka [501]

Answer:

Dead lifting uses tho muscle fundamentals

Explanation:

6 0
4 years ago
Other questions:
  • Two boys are standing on a bridge 10 m above a stream. One boy throws a rock horizontally with speed of 5.0 m/s at exactly the s
    8·1 answer
  • Although there are no glaciers in Florida , how have glaciers affected Florida?
    7·1 answer
  • Explain how you can use Boyle's law to determine the new volume of gas when its pressure is increased from 270kPa to 540kPa? The
    6·1 answer
  • The law of conservation of energy stated that ?
    5·1 answer
  • you measure or observe two events to occur at the same time one nearby and one further away. Which one did you actually see firs
    5·2 answers
  • Find the magnitude of the impulse delivered to a soccer ball when a player kicks it with a force of 1450 N . Assume that the pla
    10·1 answer
  • The solid shaft with a 20 mm radius is used to transmit the torques applied to the gears. Determine the maximum torsional shear
    6·1 answer
  • A plane accelerates to a velocity of 240 m/s in 11 s by which time it had traveled 1,400 m down the runway what were it average
    5·1 answer
  • A position versus time graph is shown:
    10·1 answer
  • Jane, looking for Tarzan, is running at top speed (6.0 m/s ) and grabs a vine hanging vertically from a tall tree in the jungle.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!