The smallest particle of a covalently bonded compound is an atom.
The solubility of gas in water is inversely proportional to the temperature. That means cool waters can hold more gases than hot waters. So when the oceans continue to warm all the green--houses gases present in oceanic waters will be released into to the atmosphere. This would further lead to the heating up of the planet. The global climate would keep changing and the temperature of the planet would increase further. Therefore, when the oceans continue to warm the amount of green-house gases cannot be sequestered by the oceans (as the temperatures are high) and so this would further enhance the greenhouse effect.
<u>Answer:</u>
For 2: The correct answer is grams of solute per 100 grams of solvent.
For 3: The correct answer is supersaturated.
For 4: the correct answer is the solubility decreases.
<u>Explanation:</u>
Solubility is defined as the property which refers to the ability of the solute that can be dissolved in a solvent. It is defined as the number of grams of solute per 100 grams of solvent.
Unsaturated solution is defined as the solution in which amount of solute that is dissolved in the solvent is less.
Saturated solution is defined as the solution in which no more solute can be dissolved in the given amount of solvent.
Emulsion is defined as the dispersion of one liquid in another liquid in which it is not soluble.
Supersaturated solution is defined as the solution in which solvent contains more amount of solute than the required amount. These solutions help in the process of crystallization.
When a crystal is added to a <u>supersaturated solution</u>, more and more particles come out of the solution and this process is known as crystallization.
According to the Henry's Law
The solubility of the gas in a liquid is directly proportional to the partial pressure of the gas.
With increase in the partial pressure, the solubility of the gas in liquid also increases and vice-versa.
Hence, the correct answer is the solubility decreases.
Divide velocity by the wavelength.
Answer:
BF3
Explanation:
For this question, you need to use the number of valence electrons present in each element. Boron is in group 3/13 on the periodic table so you know it has 3 valence electrons while Fluorine is in group 7/17 so it has 7 valence electrons. These elements are both covalent so they will share electrons. All elements in the first three rows want to reach either have 8 valence electrons or zero valence electrons depending on whichever is easier. When B and F interact each Fluorine will only want to take one electron, but Boron wants to get rid of all 3 electrons, so it will bond with 3 Fluorine to get rid of all its valence electrons.
I hope this helps.