<h2>
Resultant is 235.54 pounds at an angle 44.16° to X axis.</h2>
Explanation:
Forces are 100 pound and 150 pound and angles with x axis are 20°and 60°.
That is force 1 is 100 pound with x axis at 20°
F₁ = 100 cos 20 i + 100 sin 20 j
F₁ = 93.97 i + 34.20 j
That is force 2 is 150 pound with x axis at 60°
F₂ = 150 cos 60 i + 150 sin 60 j
F₂ = 75 i + 129.90 j
F₁ + F₂ = 93.97 i + 34.20 j + 75 i + 129.90 j
F₁ + F₂ = 168.97 i + 164.10 j

Resultant is 235.54 pounds at an angle 44.16° to X axis.
If the velocity of the train is v=s/t, where s is the distance and t is time, then v=400/5=80m/s. To get the vertical component of the velocity we need to multiply the velocity v with a sin(α): Vv=v*sin(α), where Vv is the vertical component of the velocity and α is the angle with the horizontal. So:
Vv=80*sin(10)=80*0.1736=13.888 m/s.
So the vertical component of the velocity of the train is Vv=13.888 m/s.
<span>The force of attraction by which terrestrial bodies tend to fall toward the center of the earth strongly. If i'm wrong, correct me. otherwise i hope this helped.</span>
They all have the same aphelion distances
Answer:

Explanation:
From the question we are told that:
Length 
Distance apart 
Electron Transferred 
Therefore
Total Charge
Since Charge on each electron is

Therefore


Generally the equation for Charge density is mathematically given by

Where
Area


Therefore


Generally the equation for Electric Field in the capacitor is mathematically given by


