Answer:
will mostly accord at the top of the boiling water my kind sir
Explanation:
Evaporation takes place only at the surface of a liquid, whereas boiling may occur throughout the liquid. In boiling, the change of state takes place at any point in the liquid where bubbles form. The bubbles then rise and break at the surface of the liquid.
Answer:
t = 5.89 s
Explanation:
To calculate the time, we need the radius of the pulley and the radius of the sphere which was not given in the question.
Let us assume that the radius of the pulley (
) = 0.4 m
Let the radius of the sphere (r) = 0.5 m
w = angular speed = 150 rev/min = (150 × 2π / 60) rad/s = 15.708 rad/s
Tension (T) = 20 N
mass (m) = 3 kg each


Substituting values:

Answer:
The nervous system is the major controlling, regulatory, and communicating system in the body. It is the center of all mental activity including thought, learning, and memory. Together with the endocrine system, the nervous system is responsible for regulating and maintaining homeostasis.
Explanation:
Based on the calculations, the speed required for this satellite to stay in orbit is equal to 1.8 × 10³ m/s.
<u>Given the following data:</u>
- Gravitational constant = 6.67 × 10⁻¹¹ m/kg²
- Mass of Moon = 7.36 × 10²² kg
- Distance, r = 4.2 × 10⁶ m.
<h3>How to determine the speed of this satellite?</h3>
In order to determine the speed of this satellite to stay in orbit, the centripetal force acting on it must be sufficient to change its direction.
This ultimately implies that, the centripetal force must be equal to the gravitational force as shown below:
Fc = Fg
mv²/r = GmM/r²
<u>Where:</u>
- m is the mass of the satellite.
Making v the subject of formula, we have;
v = √(GM/r)
Substituting the given parameters into the formula, we have;
v = √(6.67 × 10⁻¹¹ × 7.36 × 10²²/4.2 × 10⁶)
v = √(1,168,838.095)
v = 1,081.13 m/s.
Speed, v = 1.8 × 10³ m/s.
Read more on speed here: brainly.com/question/20162935
#SPJ1
Answer:
,
, 
Explanation:
The cube root of the complex number can determined by the following De Moivre's Formula:
![z^{\frac{1}{n} } = r^{\frac{1}{n} }\cdot \left[\cos\left(\frac{x + 2\pi\cdot k}{n} \right) + i\cdot \sin\left(\frac{x+2\pi\cdot k}{n} \right)\right]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%20%3D%20r%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%5Ccdot%20%5Cleft%5B%5Ccos%5Cleft%28%5Cfrac%7Bx%20%2B%202%5Cpi%5Ccdot%20k%7D%7Bn%7D%20%5Cright%29%20%2B%20i%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7Bx%2B2%5Cpi%5Ccdot%20k%7D%7Bn%7D%20%5Cright%29%5Cright%5D)
Where angles are measured in radians and k represents an integer between
and
.
The magnitude of the complex number is
and the equivalent angular value is
. The set of cubic roots are, respectively:
k = 0
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{1.817\pi}{3} \right)+i\cdot \sin\left(\frac{1.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B1.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B1.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

k = 1
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{3.817\pi}{3} \right)+i\cdot \sin\left(\frac{3.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B3.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B3.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

k = 2
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{5.817\pi}{3} \right)+i\cdot \sin\left(\frac{5.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B5.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B5.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)
