Answer:
43.0 kJ
Explanation:
The free energy (ΔG) measures the total energy that is presented in a thermodynamic system that is available to produce useful work, especially at thermal machines. In a reaction, the value of the variation of it indicates if the process is spontaneous or nonspontaneous because the free energy intends to decrease, so, if ΔG < 0, the reaction is spontaneous.
The standard value is measured at 25°C, 298 K, and the value of free energy varies with the temperature. It can be calculated by the standard-free energy of formation (G°f), and will be:
ΔG = ∑n*G°f products - ∑n*G°f reactants, where n is the coefficient of the substance in the balanced reaction.
By the balanced reaction given:
2NOCl(g) --> 2NO(g) + Cl2(g)
At ALEKS Data tab:
G°f, NOCl(g) = 66.1 kJ/mol
G°f, NO(g) = 87.6 kJ/mol
G°f, Cl2(g) = 0 kJ/mol
ΔG = 2*87.6 - 2*66.1
ΔG = 43.0 kJ
I think it might be Nitrogen dioxide, but please check behind
It would be the same amount. So, 45 ml of NaOH is required to be added to the 45 ml of HCI to neutralize the acid fully. Here is a brief calculation:
Firstly, here is your formula: M(HCI) x V(HCI) = M(NaOh) x V(NaOH)
With the values put in: 0.35 x 45 = 0.35 x V(NaOH)
= 45 ml.
There is 45 ml of V(NaOH)
Let me know if you need anything else. :)
- Dotz
Answer:
Nitrogen (ii) oxide
Explanation:
To know the IUPAC name for NO, we shall determine the oxidation number of N in NO.
NOTE: The oxidation number of oxygen (O) is always – 2.
Thus the oxidation number of N in NO can be obtained as follow:
N + O = 0 (ground state)
N + (– 2) = 0
N – 2 = 0
Collect like terms
N = 0 + 2
N = +2
Thus, the oxidation number of Nitrogen (N) in NO is +2.
Therefore, the IUPAC name for NO is Nitrogen (ii) oxide