Answer: X3Y2
Explanation:
The formula is
X has a valency of 2
Y has a valency of 3
So, we interchange the valencies
Therefore, the formula is
X3Y2
Answer:
The correct options are;
C. The magnitude of attraction from its nucleus
D. The distance between the electrons and its nucleus
Explanation:
The atomic radius reduces, within a given period, as we move from left to right, the number of protons increases alongside the number of electrons and the while the quantum shell to which the extra electrons are added to is the same. Therefore, the radius of the atom is dependent on the magnitude of the attraction from the nucleus
Similarly, as we progress to the next period, with an extra quantum shell, the atomic radius is seen to increase.
Therefore, the atomic radius is determined by the distance between the electrons and its nucleus.
Answer:
They are strong intermolecular forces
Explanation:
Covalent forces are very strong intermolecular forces. In fact, we can say they are the strongest. This is because several big and giant molecules have covalent bonds holding their molecules together. A good example of this is the buckministerfullerence molecule which contains carbon atom to the order of 60 carbon atoms. It is a very giant molecule and it is covalent bond that is holding the molecules together
The strongest substance in the world is diamond. It is so strong that no other substance can cut it asides another diamond. As strong as it is, the molecule is held together by very strong intermolecular forces of covalent bonds which confers the strength it has on it
Answer:
Pure water is a non conductor of electricity and dilute acids in their aqueous solutions form free ions, which conducts electricity. Thus when we need to electrolyse water, a dilute acid is added to increase its conductivity.
When the temperature and the volume of the gas stored in the container are high then the number of the moles will be measured accurately. Thus, options A and B are correct.
<h3>What is the ideal gas law?</h3>
The ideal gas law is the establishment of the relation between the elements like the moles, pressure, temperature, and the volume of the gas containing the particle.
The ideal gas states:
PV = nRT
With an increase in the temperature, the number of particles that collides increases as the kinetic energy increases. The particle of the container is more when the volume of the gas is more.
Therefore, in options A and B high temperature and volume increase the accuracy.
Learn more about ideal gas here:
brainly.com/question/14552813
#SPJ1