The brightness of the lamp is proportional to the current flowing through the lamp: the larger the current, the brighter the lamp.
The current flowing through the lamp is given by Ohm's law:

where
V is the potential difference across the lamp, which is equal to the emf of the battery, and R is the resistance of the lamp.
The problem says that the battery is replaced with one with lower emf. Looking at the formula, this means that V decreases: if we want to keep the same brightness, we need to keep I constant, therefore we need to decrease R, the resistance of the lamp.
A.is an example of decomposition reaction.
Answer:
(D)
to establish an understanding of key concepts relating to population biology
Explanation:
Thats what I would go with but I didn't read the article so I don't know what context was used. Good luck! :)
Answer:
Option D. ²²²₉₀Th
Explanation:
Let the unknown be ⁿₘZ. Thus, the equation becomes:
²²⁶₉₂U —> ⁴₂He + ⁿₘZ
Next, we shall determine n, m and Z. This can be obtained as follow:
For n:
226 = 4 + n
Collect like terms
226 – 4 = n
222 = n
n = 222
For m:
92 = 2 + m
Collect like terms
92 – 2 = m
90 = m
m = 90
For Z:
ⁿₘZ => ²²²₉₀Z => ²²²₉₀Th
Therefore, the complete equation becomes:
²²⁶₉₂U —> ⁴₂He + ⁿₘZ
²²⁶₉₂U —> ⁴₂He + ²²²₉₀Th
Thus, the unknown is ²²²₉₀Th
Answer:
gas, metal
Explanation:
The three states of by which hydrogen is found in Jupiter is made up of:
- Gaseous hydrogen
- liquid hydrogen
- liquid metal hydrogen
This is also the same states found in Saturn too.
The pressure inside the largest planet in our solar system is very great.
- Hydrogen and helium makes up the entirety of the planet Jupiter.
- It has been discovered that inside this planet, hydrogen often occurs as gas, liquid and metal
- This is often attributed to the huge amount of pressure in the planet.