Answer:
159 mg caffeine is being extracted in 60 mL dichloromethane
Explanation:
Given that:
mass of caffeine in 100 mL of water = 600 mg
Volume of the water = 100 mL
Partition co-efficient (K) = 4.6
mass of caffeine extracted = ??? (unknown)
The portion of the DCM = 60 mL
Partial co-efficient (K) = 
where;
solubility of compound in the organic solvent and
= solubility in aqueous water.
So; we can represent our data as:
÷ 
Since one part of the portion is A and the other part is B
A+B = 60 mL
A+B = 0.60
A= 0.60 - B
4.6=
÷ 
4.6 = 
4.6 ×
=
4.6 B
= 0.6 - B
2.76 B = 0.6 - B
2.76 + B = 0.6
3.76 B = 0.6
B = 
B = 0.159 g
B = 159 mg
∴ 159 mg caffeine is being extracted from the 100 mL of water containing 600 mg of caffeine with one portion of in 60 mL dichloromethane.
Answer:
Name of molecule Sulfur Difluoride ( SF2)
No of Valence Electrons in the molecule 20
Hybridization of SF2 sp3 hybridization
Bond Angles 98 degrees
Molecular Geometry of SF2 Bent
Explanation:
Sulfur Difluoride is an inorganic molecule made up of one Sulphur atom and two Fluorine atoms. It has a chemical formula of SF2 and can be generated by the reaction of Sulphur Dioxide and Potassium Fluoride or Mercury Fluoride. In this blog post, we will look at the Lewis dot structure of SF2, its molecular geometry and shape.
Answer : The moles of
are, 2.125 mole.
Explanation : Given,
Molarity of
= 8.500 M
Volume of solution = 250 mL = 0.250 L (1 L = 1000 mL)
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:


Therefore, the moles of
are, 2.125 mole.
If two gases with pressures of 2 atm and 3 atm are mixed at constant temperature, the total pressure will be the sum of the two pressures. Therefore the answer is D. 2 atm + 3 atm or 5 atm will be the total pressure of the gas mixture.