The field must be moving to produce a current in a stationary wire.
Well I believe the claim is if you use all its energy fr a long period of time it does so the claim is if the light is left on the battery runs out and flashlight stops working
<span>change in velocity = final velocity - initial velocity = v - u
for comet:
uc = initial velocity of comet (before impact)
vc = final velocity of comet
mc= mass of comet
uc = 40000 kmph
vc = ?
mc= 10 x 10^14 kg
for probe:
up = initial velocity of probe (before impact)
vp = final velocity of probe
mp= mass of probe
up= 37000 kmph
vp= ?
mp= 372 kg
Now,
by principle of conservation of momentum
(mc x uc) - (mp x up) = (mc x vc) + (mp x vp)
Since probe is in comet after collision, vp= vc = V
then,
(mc x uc) - (mp x up) = V (mc + mp )
V = [(mc x uc) - (mp x up)] / (mc + mp )
= ((10 × 10^14 × 40000) - (372 × 37000)) ÷ ((10 × 10^14) + 372)
= ???
then,
change in velocity of the comet = ??? - (40000) =
</span>
Student 1 would have a power 467 W and student 2 would have a power of 433 W. The correct option is the fourth option - Student 1 would have 467 W, and Student 2 would have 433 W of power.
From the question,
We are to calculate the power each student would have to climb the flight of stairs.
Power can be calculated using the formula

Where
P is Power
F is the force
d is the distance
and t is the time
NOTE: The weight of the students represent the force
F = 700 N
d = 4 m
t = 6 s
∴ 
P = 467 W
F = 650 N
d = 4 m
t = 6 s
∴ 
P = 433 W
Hence, Student 1 would have a power 467 W and student 2 would have a power of 433 W. The correct option is the fourth option - Student 1 would have 467 W, and Student 2 would have 433 W of power.
Learn more here: brainly.com/question/18801566
.c ...energy
Explanation:
Amplitude does not affect wavelength. It also does not affect wave speed. Amplitude is the energy of the wave measured from the rest position to the top of the crest. A wave with more energy has a higher up crest/ higher amplitude.