Work done = 0.5*m*[(v2)^2 - (v1)^2]
where m is mass,
v2 and v1 are the velocities.
Given that m = 1.50 x 10^3 kg, v2 = -15 m/s (decelerates), v1 = 25 kg,
Work done = 0.5 * 1.50 x 10^3 * ((-15)^2 - 25^2) = 3 x 10^5 joules
Just ignore the negative value for the final result because work is a scalar quantity.
Answer:
F = ⅔ F₀
Explanation:
For this exercise we use Coulomb's law
F = k q₁q₂ / r²
let's use the subscript "o" for the initial conditions
F₀ = k q² / r²
now the charge changes q₁ = q₂ = 2q and the new distance is r = 3 r
we substitute
F = k 4q² / 9 r²
F = k q² r² 4/9
F = ⅔ F₀
Answer:
The answer is (a.) An upward force balances the downward force gravity on the skydiver
The skydiver is falling at a constant velocity because the upward force is balancing the downward force of gravity. According to Newton, the opposite force balance each other. This is stated in Newton's second law of motion.
It is the very last answer