Answer:
Explanation:
Given that,
Assume number of turn is
N= 1
Radius of coil is.
r = 5cm = 0.05m
Then, Area of the surface is given as
A = πr² = π × 0.05²
A = 7.85 × 10^-3 m²
Resistance of
R = 0.20 Ω
The magnetic field is a function of time
B = 0.50exp(-20t) T
Magnitude of induce current at
t = 2s
We need to find the induced emf
This induced voltage, ε can be quantified by:
ε = −NdΦ/dt
Φ = BAcosθ, but θ = 90°, they are perpendicular
So, Φ = BA
ε = −NdΦ/dt = −N d(BA) / dt
A is a constant
ε = −NA dB/dt
Then, B = 0.50exp(-20t)
So, dB/dt = 0.5 × -20 exp(-20t)
dB/dt = -10exp(-20t)
So,
ε = −NA dB/dt
ε = −NA × -10exp(-20t)
ε = 10 × NA exp(-20t)
Now from ohms law, ε = iR
So, I = ε / R
I = 10 × NA exp(-20t) / R
Substituting the values given
I = 10×1× 7.85 ×10^-3×exp(-20×2)/0.2
I = 1.67 × 10^-18 A
Explanation:
Watts are defined as 1 Watt = 1 Joule per second (1W = 1 J/s)
which means that 1 kW = 1000 J/s. A Watt is the amount of energy (in Joules) that an electrical device (such as a light) is burning per second that it's running.
Use the Inverse square law, Intensity (I) of a light is inversely proportional to the square of the distance(d).
I=1/(d*d)
Let Intensity for lamp 1 is L1 distance be D1 so on, L2 D2 for Intensity for lamp 2 and its distance.
L1/L2=(D2*D2)/(D1*D1)
L1/15=(200*200)/(400*400)
L1=15*0.25
L1=3.75 <span>candela</span>
The resonant frequency of a circuit is the frequency
at which the equivalent impedance of a circuit is purely real (the imaginary part is null).
Mathematically this frequency is described as

Where
L = Inductance
C = Capacitance
Our values are given as


Replacing we have,



From this relationship we can also appreciate that the resonance frequency infers the maximum related transfer in the system and that therefore given an input a maximum output is obtained.
For this particular case, the smaller the capacitance and inductance values, the higher the frequency obtained is likely to be.