Answer:
The magnitude of the force required to bring the mass to rest is 15 N.
Explanation:
Given;
mass, m = 3 .00 kg
initial speed of the mass, u = 25 m/s
distance traveled by the mass, d = 62.5 m
The acceleration of the mass is given as;
v² = u² + 2ad
at the maximum distance of 62.5 m, the final velocity of the mass = 0
0 = u² + 2ad
-2ad = u²
-a = u²/2d
-a = (25)² / (2 x 62.5)
-a = 5
a = -5 m/s²
the magnitude of the acceleration = 5 m/s²
Apply Newton's second law of motion;
F = ma
F = 3 x 5
F = 15 N
Therefore, the magnitude of the force required to bring the mass to rest is 15 N.
In what may be one of the most remarkable coincidences in
all of physical science, the tangential component of circular
motion points along the tangent to the circle at every point.
The object on a circular path is moving in that exact direction
at the instant when it is located at that point in the circle. The
centripetal force ... pointing toward the center of the circle ...
is the force that bends the path of the object away from a straight
line, toward the next point on the circle. If the centripetal force
were to suddenly disappear, the object would continue moving
from that point in a straight line, along the tangent and away from
the circle.
<span>division of Earth's history into time units based largely on the types of life-forms that lived only during certain periods.</span>
Answer:
3 electrons from nitrogen and 3 from carbon while carbon already has a lone pair along with a negative charge (called cyanide)
Answer:
Quantity with direction and magnitude
Displacement
Explanation: