Cirrocumulus clouds look similar to fish scales it just pops over different kind of shapes. I hope this helps(:
Fluorine ions reacts with Hydrogen chloride to form more hydrogen fluoride.
Therefore, moles of HCl = 0.005 l × 0.01 M = 5 ×10^-5 moles
The initial moles of Hydrogen fluoride will be;
= 0.0126 M× 0.0250 = 0.00315 Moles
Moles of hydrogen fluoride after the addition of HCl
= 0.00315 + 5.0× 10^-5 = 0.0032 moles
Therefore, the concentration of Hydrogen chloride
= 0.0032 moles/ 0.030 L
= 0.107 M
The volume of the stock solution that has a concentration of 1.5 M SO2 and is diluted to a 0.54 M solution with a volume of 0.18 L is 0.065L.
<h3>How to calculate volume?</h3>
The concentration of a solution can be calculated using the following formula:
C1V1 = C2V2
Where;
- C1 = initial concentration = 1.5M
- C2 = final concentration = 0.54M
- V1 = initial volume = ?
- V2 = final volume = 0.18L
1.5 × V1 = 0.54 × 0.18
1.5V1 = 0.0972
V1 = 0.0972 ÷ 1.5
V1 = 0.065L
Therefore, the volume of the stock solution that has a concentration of 1.5 M SO2 and is diluted to a 0.54 M solution with a volume of 0.18 L is 0.065L.
Learn more about volume at: brainly.com/question/1578538
When it comes into contact with It will turn purple
Answer:
982.5 kg/m³
Explanation:
When the temperature of a fluid increases, it dilates, and because of the variation of the volume, it's density will vary too. The density can be calculated by the expression:
ρ₁ = ρ₀/(1 + β*(t₁ - t₀))
Where ρ₁ is the final density, ρ₀ the initial density, β is the constant coefficient of volume expansion, t₁ the final temperature, and t₀ the initial temperature.
At t₀ = 4°C, the water desity is ρ₀ = 1,000 kg/m³. The value of the constant for water is β = 0.0002 m³/m³ °C, so, for t₁ = 93°C
ρ₁ = 1,000/(1 + 0.0002*(93 - 4))
ρ₁ = 1,000/(1+ 0.0178)
ρ₁ = 982.5 kg/m³