Answer:
29:Mn,V,Sr
30:Ni,Pd,Cs
31:Cr, Mo, W
32:Sn,Pb,Ti
33:F, P, As
Sorry I was in a rush so it may not be right; so check with this picture to help you out.
<span>When the electron in a hydrogen atom transitions from a high energy state to a lower energy state, the energy lost from the electron is used to produce a photon corresponding to the loss of energy. That photon will correspond to exactly 1 wavelength. And since a hydrogen atom has only 1 electron, at any given moment, it can only produce 1 photon. And in order to simultaneously produce 4 photons for 4 spectral lines, that would require a simultaneous transition of 4 electrons which is 3 too many for a hydrogen atom.</span>
Answer:
See explanation and image attached for details
Explanation:
The reaction involves the heterolytic fission of the Br-Br bond in the bromine molecule to yield a bromine cation which attacks the but-1-ene to form a cyclic intermediate called the brominium ion. The bromine anion must now attack from the opposite face of the brominium ion due to steric clashes to form a product of a 1,2-dibromoalkane having the anti- stereochemistry.
The correct answer is D - When burning a log, the wood combined its components with oxygen. if you could capture the products (CO2, H2O, C, CO, etc), you would have a greater mass than what you started with, burning the log combined the log's components with oxygen in order to burn it.