Answer:
The maximum kinetic energy is 100 j.
Explanation:
<h3>The kinetic energy = (potential energy) + (kinetic energy) and the potential energy of 0 J implying its kinetic energy is 100 J, which is its maximum.
</h3>
The general formula is: Momentum = (mass) x (speed)
I never like to just write a bunch of algebra without explaining it.
But in this particular case, there's really not much to say, and
I think the algebra will pretty well explain itself. I hope so:
Original momentum = (original mass) x (original speed)
New momentum = (2 x original mass) x (2 x original speed)
= (2) x (original mass) x (2) x (original speed)
= (2) x (2) x (original mass) x (original speed)
= (4) x (original mass) x (original speed)
= (4) x (original momentum).
Answer:
a) It takes her 1.43 s to reach a speed of 2.00 m/s.
b) Her deceleration is - 2.50 m/s²
Explanation:
The equation of velocity for an object that moves in a straight line with constant acceleration is as follows:
v = v0 + a · t
Where:
v = velocty.
v0 = initial velocity.
a = acceleration.
t = time.
a) Using the equation of velocity, let´s consider that the car moves in the positive direction. Then:
v = v0 + a · t
2.00 m/s = 0 m/s + 1.40 m/s² · t
t = 2.00 m/s / 1.40 m/s²
t = 1.43 s
It takes her 1.43 s to reach a speed of 2.00 m/s
b) Let´s use again the equation of velocity, knowing that at t = 0.800 s the velocity is 0 m/s:
v = v0 + a · t
0 = 2.00 m/s + a · 0.800 s
-2.00 m/s / 0.800 s = a
a = -2.50 m/s²
Her deceleration is - 2.50 m/s²
Answer:

Explanation:
Current is the rate of flow of charge.


