She is

kilometers away from her starting point
Correct answer is letter B. sandstone
Answer:
The 24th term is 80 and the sum of 24 terms is 1092.
Explanation:
Given that,
The arithmetic series is
11,14,17,........24
First term a = 11
Difference d = 14-11=3
We need to calculate the 24th term of the arithmetic sequence
Using formula of number of terms

Put the value into the formula



We need to calculate the sum of the first 24 terms of the series
Using formula of sum,

Put the value into the formula


Hence, The 24th term is 80 and the sum of 24 terms is 1092.
Answer:
The horizontal displacement of the arrow is not larger than the banana split.
Explanation:
Using y - y₀ = ut - 1/2gt², we find the time it takes the arrow to drop to the ground from the top of mount Everest.
So, y₀ = elevation of Mount Everest = 29029 ft = 29029 × 1ft = 29029 × 0.3048 m = 8848.04 m, y = final position of arrow = 0 m, u = initial vertical speed of arrow = 0 m/s, g = acceleration due to gravity = 9.8 m/s² and t = time taken for arrow to fall to the ground.
y - y₀ = ut - 1/2gt²
0 - y₀ = 0 × t - 1/2gt²
-y₀ = -1/2gt²
t² = 2y₀/g
t = √(2y₀/g)
Substituting the values of the variables, we have
t = √(2y₀/g)
= √(2 × 8848.04 m/9.8 m/s²)
= √(17696.08 m/9.8 m/s²)
= √(1805.72 s²)
= 42.5 s
The horizontal distance the arrow moves is thus d = vt where v = maximum firing speed of arrow = 100 m/s and t = 42.5 s
So, d = vt
= 100 m/s × 42.5 s
= 4250 m
= 4.25 km
Since d = 4.25 km < 7.32 km, the horizontal displacement of the arrow is not larger than the banana split.
Answer:
61.76 N.
Explanation:
Given the mass of the car, m = 1.60 kg.
The speed of the car, v = 12.0 m/s.
The radius of the circle, r = 5 m.
As car is moving in circular motion, so net force ( normal force + weight of the car) is equal to centripetal force enables the car to reamins in circular path.
Let N is the normal force.
So, 

Now substitute the given values, we get


N = 61.76 N.
Thus, the magnitude ofthe normal force exerted on the car by the walls is 61.76 N.