1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatyana61 [14]
3 years ago
6

Regular exercise is positively related to wellness

Physics
1 answer:
Harman [31]3 years ago
7 0

Answer:

yes  ( true)

Explanation:

positive  effects on all  the body systems.

You might be interested in
To do work, this truck uses energy stored in chemical
GREYUIT [131]

800 J Got it right on edgenuity

4 0
3 years ago
The temperature at one of the Viking sites on Mars was found to vary daily from -90.OF to -5.0 C. Convert these temperatures to
kykrilka [37]

Answer:

I don't know about this, this is which class question

6 0
3 years ago
Which of the following is a surface phenomenon A evaporation B boiling C melting D freezing​
yaroslaw [1]

Answer:

A. evaporation

Explanation:

Evaporation is a surface phenomenon as the molecules of the surface gets sufficient energy to overcome the force of attraction which will help in converting to the vapor phase.

5 0
3 years ago
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
3 years ago
A 2kg object initially going 4m/s to the right is later going 8m/s. whats the change in velocity?
Nezavi [6.7K]

The change in velocity is +4 m/s to the right (or -4 m/s to the left).

The object's mass is irrelevant.

6 0
3 years ago
Other questions:
  • What planet has the least amount of inertia
    7·1 answer
  • Below is a list of characteristics for electric and magnetic fields. Put an "E" in front of the statement if it applies only to
    9·1 answer
  • Characteristics of abuse of Narcotics include ______.
    9·1 answer
  • What is the conversion factor between km/h2 and m/s2?
    6·1 answer
  • A 0.45 m radius, 500 turn coil is rotated one-fourth of a revolution in 4.01 ms, originally having its plane perpendicular to a
    8·1 answer
  • A satellite moves in a circular orbit a distance of 1.6×10^5 m above Earth's surface. (radius of Earth is 6.38 x 10^6m and its m
    5·1 answer
  • Which of the following best describes chemical weathering?
    10·2 answers
  • What is a living thing?
    9·2 answers
  • A 45000 watt crane operating at full power lifts a 2100 kg object vertically for 17.4 seconds. How high has the crane lifted the
    12·1 answer
  • Do you know what NBA basketball player is this. And what is he doing to stay healthy.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!