I believe that the best answer among the choices provided by the question is the second choice ,<span>B) radiant energy
</span>
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.
<u>We are given:</u>
Mass of the rocket = 10 kg
Weight of the Rocket = 100 N
Upward thrust applied by the rocket = 400 N
<u>Net upward force on the rocket:</u>
We are given that gravity pulls the rocket with a force of 100 N
Also, the rocket applied a force of 400N against gravity
Net upward force = Upward thrust - Force applied by gravity
Net upward force = 400 - 100
Net upward force = 300 N
<u>Upward Acceleration of the Rocket:</u>
From newton's second law:
F = ma
<em>replacing the variables</em>
300 = 10 * a
a = 30 m/s²
When two or more waves meet, they interact with each other. The interaction of waves with other waves is called wave interference. Wave interference may occur when two waves that are traveling in opposite directions meet. The two waves pass through each other, and this affects their amplitude.
Answer:
P = 180.81 J
Explanation:
Given that,
Mass of a object, m = 4.1 kg
It is lifted to a height of 4.5 m
We need to find the potential energy of the object due to gravity. It is given by the formula as follows :
P = mgh Where g is acceleration due to gravity
P = 4.1 kg × 9.8 m/s² × 4.5 m
P = 180.81 J
Hence, the potential energy is 180.81 J.
Answer:
0.54454
104.00902 N
Explanation:
m = Mass of wheel = 100 kg
r = Radius = 0.52 m
t = Time taken = 6 seconds
= Final angular velocity
= Initial angular velocity
= Angular acceleration
Mass of inertia is given by

Angular acceleration is given by

Equation of rotational motion

The coefficient of friction is 0.54454
At r = 0.25 m

The force needed to stop the wheel is 104.00902 N