Explanation:
Given -
- An organic compound gives H₂ gas with Na
- On treatment with alkaline iodine it gives yellow ppt.
- On oxidation with CrO₃/H⁺ forms an aldehyde (C₂H₄O)
To Find -
- Name the compound and write the reaction involved
Now,
Let A be the organic compound.
Then,
- A + Na → + H₂↑
- A + I₂ → CHI₃ (yellow ppt.)
- A + CrO₃ + H⁺ → C₂H₄O
Now,
Here we see that compound A reacts with chromic oxide (CrO₃) in the presence of acidic medium gives aldehyde.
- Functional group of aldehyde = —CHO
And It forms only 2 Carbon aldehyde it means, It is Ethanal (CH₃CHO).
Compound A reacts with chromic oxide (CrO₃) in the presence of acidic medium gives ethanal.
It means,
We know that 1° alcohol on oxidation gives aldehyde.
Here it gives 2 Carbon aldehyde.
It means,
Here 2 Carbon and 1° alcohol is used.
Now,
Its cleared that Compound A is Ethanol.
Reaction Involved -
- CH₃CH₂OH + Na → CH₃CH₂O⁻Na⁺ + H₂↑
- CH₃CH₂OH + I₂ + OH⁻ → CHI₃↓ + HCOO⁻ + HI + H₂O
- CH₃CH₂OH + CrO₃ + H⁺ → CH₃CHO
Secrets undiscovered is correct, but this chemical formula is not balanced. Double check your question to make sure
Answer:
173.83 mmHg is the vapor pressure of a ethylene glycol solution.
Explanation:
Vapor pressure of water at 65 °C=
Vapor pressure of the solution at 65 °C= 
The relative lowering of vapor pressure of solution in which non volatile solute is dissolved is equal to mole fraction of solute in the solution.
Mass of ethylene glycol = 22.37 g
Mass of water in a solution = 82.21 g
Moles of water=
Moles of ethylene glycol=



173.83 mmHg is the vapor pressure of a ethylene glycol solution.
Ooooh boy alright. So, this may or may not be a limited reactant problem so we need to first find out of it is.
First, how many moles of each substance are there
the molar mass of BCl3 is <span>117.17 grams so 37.5 g / 117.17 is ~ .32 mol.
The molar mass of H2O is 18.02 so 60 / 18.02 is ~ 3.33 mol.
Now, for every 1 mole of BCl3, there are 3 moles of HCl created. Therefore, BCl3 can create ~ .96 moles.
For every 3 moles of H2O, there are 3 moles of HCl created. Therefore, HCl can create ~3.33 moles.
But, there is not enough BCl3 to support that 3.33 moles, only enough for .96 moles, therefore BCl3 is the limiting reactant. Now, to answer the question, simply multiply .96 moles by the molar mass of HCl.
.96 x 36.46 = ~35 g</span>