Answer:
Explanation:
F = ma
<u>Assuming</u> the 20° is angle θ measured to the horizontal
mgsinθ - μmgcosθ = ma
g(sinθ - μcosθ) = a
at constant velocity, a = 0
g(sinθ - μcosθ) = 0
sinθ - μcosθ = 0
sinθ = μcosθ
μ = sinθ/cosθ
μ = tanθ
μ = tan20
μ = 0.3639702342...
μ = 0.36
Explanation:
The tangential speed of Andrea is given by :

Where
r is radius of the circular path
ω is angular speed
The merry-go-round is rotating at a constant angular speed. Let the new distance from the center of the circular platform is r'
r' = 2r
New angular speed,

New angular speed is twice that of the Chuck's speed.
You are correct because nothing is being done to the cake
Light from the stars, because the orbits make it difficult to see them.
By definition of average acceleration,
<em>a</em> = (20 m/s - 33.1 m/s) / (4.7 s) ≈ -2.78 m/s²
Vertically, the car is in equilibrium, so the net force is equal to the friction force in the direction opposite the car's motion:
∑ <em>F</em> = (1502.7 kg) (-2.78 m/s²) ≈ -4188.38 N ≈ -4200 N
If you just want the magnitude, drop the negative sign.