<span>The magnitude of the rock is equal to g. After the rock is released, there are no more forces acting on it, yet gravity remains. The initial inputs, on a bridge, at an angle of 30 deg below horizontal do not matter after the release.</span>
Answer:
1.2 * 10' -8N (Check attachment
Explanation:
Check attachment
Answer:
✓ Ion
Explanation:
Which term BEST describes the form of beryllium shown? Protons=4 Neutrons=5 Electrons=2
✓ Ion
Answer:
6 cm long
Explanation:
F = 4110N
Vo(speed of sound) = 344m/s
Mass = 7.25g = 0.00725kg
L = 62.0cm = 0.62m
Speed of a wave in string is
V = √(F / μ)
V = speed of the wave
F = force of tension acting on the string
μ = mass per unit density
F(n) = n (v / 2L)
L = string length
μ = mass / length
μ = 0.00725 / 0.62
μ = 0.0116 ≅ 0.0117kg/m
V = √(F / μ)
V = √(4110 / 0.0117)
v = 592.69m/s
Second overtone n = 3 since it's the third harmonic
F(n) = n * (v / 2L)
F₃ = 3 * [592.69 / (2 * 0.62)
F₃ = 1778.07 / 1.24 = 1433.927Hz
The frequency for standing wave in a stopped pipe
f = n (v / 4L)
Since it's the first fundamental, n = 1
1433.93 = 344 / 4L
4L = 344 / 1433.93
4L = 0.2399
L = 0.0599
L = 0.06cm
L = 6cm
The pipe should be 6 cm long
Frictional forces act in the direction opposite to the MOTION. That direction could be the same OR opposite to applied force.
-- If you push a loaded heavy wagon from behind, trying to get it going faster, friction is acting against you, opposite to your force.
-- If you push a loaded rolling heavy wagon from in front, trying to make it slow down, friction is acting with you, in the same direction as your force.
-- Opposite to the motion both times.