The average velocity or displacement of a particle for the first time interval is <u>Δs / Δt = 6 cm/s.</u>
Solution:
As we know that displacement is calculated in centimeters and the unit of time is second.
The average velocity for the first interval [1,2] is given
Δs / Δt = s (t2) - s (t) / t2 - t1
Δs / Δt = 2sin2 π + 3cos 2 π - ( 2sin π + 3cos π ) / 2 - 1
Δs / Δt = 2(0) + 3(1) - 2(0) - 3 (-1) / 1
Δs / Δt = 6 cm/s
Thus the average velocity or displacement of a particle for the first time interval is Δs / Δt = 6 cm/s
If you need to learn more about displacement click here:
brainly.com/question/28370322
#SPJ4
The complete question is:
The displacement of a particle moving back and forth along a line is given by the following equation s(t) = 2sin π t + 3cos π t. Estimate the instantaneous velocity of the particle when t = 1
Answer:
F = 51.3°
Explanation:
The component of weight parallel to the inclined plane must be responsible for the rolling back motion of the car. Hence, the force required to be applied by the child must also be equal to that component of weight:

where,
W = Weight of Wagon = 150 N
θ = Angle of Inclinition = 20°
Therefore,

<u>F = 51.3°</u>
Answer: H
Explanation:
When beavers dam a stream they slow the movement of water. Behind the beaver dam, a pond of still water is formed. This pond is then colonized by animals and plants that typically live in lakes rather than streams.
Answer:
Explanation:
First, It's important to remember F = ma, and in this problem m = 13.3 kg
This can be reduced to a simple system of equations problem. Now if they are both going the same way then we add them, while if they are going the opposite way we subtract them. So let's call them F1 and F2, with F1 arger than F2. Now, When we add them together F1+F2 = (.723 m/s^2)*13.3kg and then when we subtract them, and have the larger one pushing toward the east, let's call F1 the larger one, F1-F2 = (.493 m/s^2)*13.3kg.
Can you solve this system of equations seeing them like this, or do you need more help?
Grade 1: Stretching or slight tearing of the ligament with mild tenderness, swelling and stiffness. The ankle feels stable and it is usually possible to walk with minimal pain.
Grade 2: A more severe sprain, but incomplete tear with moderate pain, swelling and bruising. Although it feels somewhat stable, the damaged areas are tender to the touch and walking is painful.
Grade 3: This is a complete tear of the affected ligament(s) with severe swelling and bruising. The ankle is unstable and walking is likely not possible because the ankle gives out and there is intense pain.
source - https://www.rushcopley.com/health/physician-articles/varying-degrees-of-ankle-sprains/